Here are given results of activation intercomparison in iron and aluminum for short cooling time, (namely t=1 d). Different assumptions for irradiation time T were taken -- 30d, 100d, and 10y. For T=10 y three cases were calculated – ten irradiation periods with $T_i=120 \text{ d}$ ($t_i=245 \text{ d}$), $T_i=180 \text{ d}$) ($t_i=245 \text{ d}$), $T_i=180 \text{ d}$) ($t_i=245 \text{ d}$), $T_i=180 \text{ d}$) ($t_i=245 \text{ d}$), $T_i=180 \text{ d}$) ($t_i=245 \text{ d}$), $T_i=180 \text{ d}$) ($t_i=245 \text{ d}$), $T_i=180 \text{ d}$) ($t_i=245 \text{ d}$)) ($t_i=2$ 185 d), and $T_i=365 d (t_i=0 d)$.

Results of simulations in terms of specific Gamma-equivalent are given in Table 1. Total Gammaequivalent and Gamma-equivalent of dominant radionuclide are presented for the both materials. Methods for estimation and other assumptions are the same as in the previous note of May 15.

Table 1

Specific Gamma-equivalents, (Sv.m ²)/(cm ³ .s)							
Material	Ì	T=30 d	T=100 d	T=10y	T=10y	T=10 y	
				(T _i =120d)	(T _i =180d)	(T _i =365 d)	
Al	Na-24	2.49E-14	2.49E-14	2.49E-14	2.49E-14	2.49E-14	
	tot	2.65E-14	2.99E-14	4.85E-14	5.95E-14	9.05E-14	
Fe	Mn-52	5.40E-13	5.60E-13	5.60E-13	5.60E-13	5.60E-13	
	tot	7.20E-13	8.10E-13	8.40E-13	8.70E-13	9.20E-13	

Т	abl	le	2

8.20E-09

		0		-3 -1						
Omega factors, (Sv/h)/(Stars.cm ⁻³ .s ⁻¹)										
Material	Author	T=30 d	T=100 d		T=10y	T=10 y				
				(Ti=120d)	(Ti=180d)	-				
Al	Morev	3.72E-09	4.20E-09	6.81E-09	8.35E-09	1.27E-08				
	Huntinen	4.70E-09	_	-	-	1.60E-08				
Fe	Morev	1.25E-08	1.41E-08	1.46E-08	1.51E-08	1.60E-08				

One can see from the Table 2, that Morev and Huntinen have quite similar results for Al activation. The difference of about 30% may be explained by either different spectra (Mika used real specter, Morev used $E_p=600 \text{ MeV}$) or cross-sections (Morev use protons cross-section for pions – for very high energies it produce conservative estimation).

_

Morev's results in Fe are 3 times above for T=30 d and 2 times above for T=10y.

4.00E-09

Huntinen

So, I conclude that disagreement in Fe/Al ratio for short cooling time results from disagreement in Fe activation, and first of all in Mn^{52} cross-section. In my cross-section library I have only Mn^{52m+g} crosssection and no data on branching ratio for ground and isomer production, consequently I used an ultimately conservative assumption as if the both nuclides are produced independently with branching ratio 1.0 (Mika used 0.5). In addition, the cross-section itself seems to be overestimated by a factor of 2 (the reaction is not very good measured and I used calculated data; all available experimental points lay beneath the calculated curve). An overestimation of Mn⁵² cross-section by factor of 4 may explain the disagreement. Since Mn^{52} half decay is 5.6 days, the difference in omega factors for t=5-7 days will be less evident.