# MOSCOW ENGINEERING PHYSICS INSTITUTE

# ACTIVATION DOSE RATE IN ACCSESS TO THE INNER DETECTOR

V.A.Klimanov, E.I.Kulakova, M.N.Morev, V.K.Sakharov

ISTC Project #1800-p

# Abstract

The present note reports on the results obtained in evaluating activation dose rate for long-access scenario to the inner detector. Contributions of individual materials/systems to activation dose rate are studied. Activation dose rate fields for different opening layouts are calculated.

Moscow, 20 June 2002

### 1. Introduction

Being operated in harsh radiation environment, the ID detector is to be activated to a significant level that makes problems for maintenance procedures. Induced radioactivity is produced by elementary particles and depends on flux, energy spectra of the particles, activation cross-section, type and mass of irradiated material, exposure time and time after shut down.

Interactions of hadrons with stable nuclei produce most contribution to induced radioactivity. From the methodical viewpoint, its is convenient to divide the energy range onto two sub-ranges: (1) from thermal energies to 20 MeV, and (2) above 20 MeV. The point is that different processes of radionuclide production predominate in the energy ranges. At energy below 20 MeV, neutron induced reactions like  $(n,\gamma)$ , (n,p),  $(n,\alpha)$ , and (n,2n) predominate. While, at energy above 20 MeV hadron-induced spallation reactions (x,Spall), were X is proton, neutron, Pi+, or Pi-, are most important. The division is also convenient due to different representation and availability of activation cross-sections. Neutron cross-sections are studied well enough for energy region below 20 MeV, as they are widely used in reactor applications. For energy above 20 MeV activation cross-sections are studied in less detail. As a rule, only proton cross-sections are studied well enough and used as estimation for other hadrons— neutrons and pions.

The note reports on the results achieved during the implementation of the ISTC #1800-p project. The basic aim for the note is to present preliminary evaluation of activation dose rate in the ID long-access scenario on the base of previously developed activation code and associated data sets.

The results reported in the note should be treated as preliminary estimation because the ID design is not yet finalized and a great attention is made to outline the need for more correct estimation of material inventory.

In the general long-access scenario [1] the following systems will contribute to radiation environment: LAr Barrel and EndCap Calorimeter, Inner detector beam-pipe (VI), LAr beam-pipe (VA), Pixel Detector, Semiconductor Tracker (SCT), Transition Radiation Tracker (TRT), and their services. Activation dose rate field produced by every separate system/subsystem is calculated for different exposure and cooling time assumptions, but due to extremely large volume of the obtained data here we give only summary results. A more detailed data is available and may be useful for estimating doses in scenarios involving disassembly of the inner detector. As soon as such scenarios will be developed, the activation dose rate fields at any dismantling step may be easily got as superposition of doses from the systems which are still in place.

All the results are normalized to nominal beam-luminosity  $10^{34}$  cm<sup>-2</sup>s<sup>-1</sup>.

# 2. The simulations

#### 2.1 Induced activity

It is convenient to use activation integral (production rate) for calculation of induced activity. The integral, calculated per one target nuclear, shows the rate of a nuclear reaction:

$$q = \int_{0}^{\infty} \sigma(E) \varphi(E) dE$$

where,  $\sigma(E)$  - activation cross-section,  $\varphi(E)$  - flux of particles.

Having solved the balance equation for the number of radioactive nuclei, one could come to the formula for activity A, Bq per unit volume

$$A_{\rm v} = nq(1 - \exp(-\lambda T))\exp(-\lambda t) \tag{1}$$

where  $\lambda$  is the decay constant,  $\lambda = \ln(2)/T_{1/2}$  and  $T_{1/2}$  is half life;

*n* - number of target nuclei per unit of volume;

*T* - is exposure time in the steady flux;

*t* - time after shut down.

In (1) we disregard any burning-out processes for both stable and target nuclei. The same expressions one could formulate for the daughter radioactive nuclei produced by radioactive decay of radionuclide - the product of nuclear reaction. Practically, it is enough to consider a mass-chain of three radioactive nuclei, as there is not a radionuclide with half decay exceeding few hours, which would have a longer mass-chain.

In the case the flux (luminosity) cannot be considered as steady in time, its possible to approximate it with a step-wise function of time. So that, the formula (1) will transform into the following:

$$A_{v} = \frac{nq_{nom}}{W_{nom}} \left\{ \sum_{j=1}^{J} W_{j} \left( 1 - \exp(-\lambda \Delta T_{j}) \right) \exp\left(-\lambda \left(t + T - \sum_{i=1}^{j} \Delta T_{i} \right) \right) \right\}$$
(2)

where  $q_{nom}$  - is activation integral calculated for the nominal  $W_{nom}$  luminosity;  $W_j$  – luminosity during the time period  $\Delta T_j$ ;  $T = \sum_{i=1}^{J} T_j$  - full exposure time.

Number of target nuclei per unit volume in formulas (1) and (2) are calculated using:

$$\boldsymbol{n} = P \rho \, N_A / A, \tag{3}$$

where, P - natural abundance of the isotope in the material;  $\rho$  - density;  $N_A$  - Avogadro constant; A- atomic weight of the element.

Being defined as number of decays per second (Bq), activity is not a really convenient value. Activation processes results in great many radionuclides, which properties vary greatly. Since every material (and subsistem) in every particular moment of time will have a unique radinuclide inventory, it is impossible to conclude which of them is more dangerous by their activity only. A more convenient value is the so-called "gamma-equivalent" defined as the product of gamma-factor  $\Gamma$  by activity. Gamma-equivalent  $k_e$ , Sv.m<sup>2</sup>s<sup>-1</sup>, is equal to the dose rate from a point-wise radionuclide source with activity *A* at the distance 1 m without any shielding.

$$k_e = A \Gamma_H$$
 ,

 $\Gamma_{H_s} \frac{\text{Sv} \cdot \text{m}^2}{\text{Bq} \cdot \text{s}}$ , is "gamma-factor", which is constant for a given radionuclide emitting I

gamma rays with different energy  $E_{0i},\,\mbox{MeV}$  and absolute intensity  $n_i,\,\mbox{photons}$  per decay:

$$\Gamma_{H} = \frac{\sum_{i=1}^{I} \left( E_{0i} n_{i} \mu_{en,m}^{tiss}(E_{0i}) w \right) 1.602 \cdot 10^{-13}}{4\pi}$$
(5)

where  $\mu_{en,m}^{tiss}(E_{0i})$  - mass energy attenuation coefficient for energy  $E_{0i}$  emitted by the radionuclide in the biological tissue, m<sup>2</sup>/kg;

w= 1 Sv/Gy - tissue weighting factor for photons; Factor 1.602E-13 is used to transform energy  $E_{0i}$  from MeV to Joles.

If the activated material contains more than one radionuclide, then the gammaequivalent will be the sum for all the radionuclides.

Since the gamma-equivalent is defined as dose rate from point-wise radionuclide source, it is quite a convenient value to compare radioactive sources of arbitrary radionuclide inventories. In addition, if one can disregard self-attenuation of photons in a source of complex geometry, the dose rate will correlate with the total gamma-equivalent<sup>1</sup>.

The described methods for simulation of induced activity and gamma-equivalent have been implemented in the ACTIVATION-2 code [2,3]. In addition, the code allows to calculate a distributed volume source of photons, which is used in the study as input for simulation of photons transport with radiation transport codes DOT-III [4]. The ACTIVATION-2 code is equally applicable for study of both low energy neutrons and high-energy hadron activation if relevant group activation cross-sections libraries are available.

#### 2.2 Dose rate

Both simple engineering methods and radiation transport codes are used in the present study to simulate dose rate fields. Engineering methods are based on simplification of real geometry and radiation source distribution that enables an analytical solution. A complex geometry can be represented as a set of sources of simple shape and dose rate will be the sum over the sources. Being properly used, engineering methods allow to get rather a precise estimation for dose rate. Though applicability of every particular method is limited, and its use must be justified on case-by-case basis. If geometry is complex enough or radiation source is not uniform, the only way to get correct solution is to use venerable codes for simulating radiation transport in real geometry. In this study we use DOT-III two-dimensional discrete ordinate radiation transport code.

The average density of material in the Inner Detector is rather low. As a result, one can disregard attenuation of gamma radiation in materials of the detector. To estimate dose rate from VI beam-pipe, VA beam-pipe, Pixel, SCT, TRT, and their services we use the following engineering method.

An Inner Detector sub-volume was represented as a set of thin circular radiation sources with the center positioned on the Z-axis and dose rate in a point  $(Z_0,R_0)$  is sum of contributions from all the sources:

$$H = 3600 \sum_{i} \frac{k_{i}}{\sqrt{\left(R_{0}^{2} - R_{i}^{2}\right)^{2} + 2\left(Z_{0} - Z_{i}\right)^{2}\left(R_{0}^{2} + R_{i}^{2}\right) + \left(Z_{0} - Z_{i}\right)^{4}}},$$
(8)

where  $\dot{H}$  - equivalent dose rate, Sv/h,  $k_i$  is gamma-equivalent of source *i*, Sv.m<sup>2</sup>/s;

 $R_i$  and  $Z_i$ -radius of the ring and its position along z-axis, m.



<sup>&</sup>lt;sup>1</sup> Dose from localized source correlates with total gamma-equivalent; dose on the surface of thick (with considerable self-absorption) source correlates with specific gamma-equivalent; dose rate from extended low-density source (negligible self-absorption) correlates with volumetric gamma-equivalent.

At that the doses will be somewhat conservative as no attenuation of gamma radiation in the source was taken into account. In addition, one should carefully consider partitioning of the source– finite size of Z/R mesh should be much less than the distance to the point were the dose is calculated (because dose rate for  $Z_i=Z_0$  and  $R_i=R_0$  is infinitely high). As a result, dose rate may be overestimated in the region close to the source surface by some 30%.

Dose rate fields from LAr calorimeter were calculated with DOT radiation transport code and DLC-23/CASK cross-section library [5]. Calculations were done in  $P_3$  approximation of cross-section angular dependence and  $S_{16}$  flux angular mesh with distributed photon source simulated by ACTIVATION-2 code.

# 3 Input data

In order to simulate induced activity one should know:

- flux and spectra of incident particles;
- cross-section of nuclear reactions producing radioactive nuclei;
- concentration of target nuclei and the geometry;
- operation scenario: time of operation *T* and time of cooling *t*.

# **3.1 Hadron Fluxes**

Fluxes in the region  $0 \le R \le 12$  m,  $0 \le Z \le 24$  m were produced by Mike Shupe with GEANT/GCALOR. The following data together with a readback procedure are available [6]:

- Fluxes with step by z-axis  $\Delta Z=10$  cm and step by r-axis  $\Delta R=0.1$  cm (0<R<4 cm),  $\Delta R=1$  cm (4<R<120 cm), and  $\Delta R=1$  cm (120 cm<R)
- 1. High energy neutrons above 20 MeV;
- 2. Fast neutrons 2.19 MeV to 20 MeV;
- 3. Intermediate neutrons 3.78 keV to 2.19 MeV;
- 4. Moderated neutrons 0.414 eV to 3.78 keV;
- 5. Thermal neutrons 10E-5 to 0.414 eV;
- 6. Protons above 20 MeV;
- 7. Pi minus above 20 MeV;
- 8. Pi plus above 20 MeV;
- 9. Stars, threshold 50 MeV.
- Neutron spectra on 10 cm x 10 cm grid (R< 50 cm) and 100 cm x 100 cm (0<R< 500 cm) grid, 61 energy groups.
- Charged hadron spectra on 10 cm x 10 cm grid (R< 50 cm) and 50 cm x 50 cm (0<R< 500 cm) grid, 21 energy groups:
- 1. protons,
- 2.  $\pi$ -pions,
- 3.  $\pi$ + pions.

The data was calculated for baseline geometry of November 2001.

## **3.2 Cross-sections**

Cross-sections of nuclear reactions producing radioactive nuclei are usually available in form of data libraries.

Historically, neutron cross-sections, ranging from thermal energies up to 20 MeV,

are studied rather well, because they are extensively used in fission reactor applications. There are a number sources available, e.g ENDF, JANDL, IRDF.

Calculated proton cross-sections for threshold reactions are available up to energy 200 MeV from MENDL-2 data library [7]. Proton reaction data up to energy 10 GeV are also available in the form of experimental or calculated data compilations for a limited list of materials [8,9].

Cross-section data set for protons was prepared in the same energy group structure as flux spectra. By now the data set includes Be, C, N, O, F, Al, Ar, Ti, Mn, Fe, Ni, Cu, Au, Pb. For other elements we use cross-sections of material with a most close atomic number. For example, in the study we use cross-sections for Mn instead of Cr, Cu instead of Zn, and Pb instead of W.

There were no pion activation cross-sections data found so far. For the purpose of this study, proton cross- sections are used for all hadrons with energy above 20 MeV. The estimation is rather valid for neutrons and results are certainly conservative for pions (up to 30%), that can be concluded from the energy dependence of hadrons inelastic cross-sections.

#### **3.3 Geometry and Concentrations**

#### 3.3.1 LAr Calorimeter

LAr calorimeter geometry/materials were adopted from geometry/material description file (version of November 2001) used by Mike Shupe for hadrons transport calculation with GEANT/GCALOR [6].

Barrel calorimeter geometry description and material composition are given in Tables 1 and 2. EndCap calorimeter geometry description and material composition are given in Tables 3 and 4.

The GEANT/GCALOR geometry data file is rather comprehensive to reflect all the distinct features relevant to radiation transport, but for the purpose of activation study it is desirable to know concentration of some minor chemical element (impurities) as well. Concentration of the impurities such as Co, Ag, Sb is negligible for radiation transport, but activation of the impurities by thermal neutrons result in production of long-lived radionuclides and may dominate dose rate in some cases. Since no concentrations of the impurities are available, we have to use the following assumptions:

- Cobalt content is a usual impurity to nickel. In the study we assume that cobalt makes up 2% of nickel weight. The value is adopted on the base of analysis of Co/Ni ratio in stainless steels and assumed to be the upper limit. Though the real content of cobalt may vary within a factor of 10 even in steel. This results in significant uncertainty for great cooling/exposure times, as half decay time of <sup>60</sup>Co (the only important radionuclide produced by low energy neutrons in cobalt) is 5.27 year.
- Silver and antimony are usual impurities to copper and lead. There is no data available on concentration of the elements in copper to produce any secure assumptions. For the lead we use concentrations adopted from Chemical Lead UNS L51120 specifications (Pb>99.9%, Ag 0.002 0.02%, As+Sb+Sn<0.002%, Bi<0.005%, Cu 0.04 0.08%, Fe<0.002%, Zn< 0.001) [10]. Though previous study has shown that such concentrations do not produce significant contribution to activation [11].</li>

#### 3.3.2 ID beam-pipe (VI)

Geometry of VI was adopted from LHCVC1I\_0003 drawing. Geometry description of VI is given in Table 5. Materials are beryllium and Aluminum Alloy 5000 Series. Composition of aluminum alloy was adopted from specifications available on [10]: Al 94.8%, Cr - 0.05 - 0.25%, Cu<0.1%, Fe< 0.4%, Mg 4%, Mn 0.4 – 1%, Si<0.4%, Ti<0.15%, Zn<0.25%.

#### 3.3.3 LAr beam-pipe (VA)

Geometry of VA was adopted from LHCVC1A\_0001 drawing. Geometry description of VA is given in Table 6. Material is 316L stainless steel. Composition of stainless steel was adopted from UNS S31603 specification [10]: C 0.03%, Cr 16-18%, Fe 62-69 %, Mn 2%, Mo 2-3%, Ni 10-14%, Si 0.75%. Concentration of cobalt was assumed to make up 2% of nickel weight.

Previous study has shown that the dose rate from stainless steel VA will be extremely high – up to several mSv/h [12]. Possible design/material changes are being studied currently to decrease the doses. So the results of VA calculations should be considered as preliminary.

#### 3.3.4 Pixel detector

Geometry and composition of the Pixel detector was taken from inventory of metals spreadsheet produced by Marco Olcese [13]. The geometry and composition for the Pixel detector are given in Table 7 and 8. Concentration of cobalt was assumed to make up 2% of nickel weight.

The inventory is not comprehensive -- non-metallic elements such as carbon and silicon were omitted. Though content of the materials can be recalculated from file prepared by Ivan Bedajanek [14], which gives us approximately 0.6 kg of silicon and 30 kg carbon. Content of silicon is negligible as compared to aluminum – 26 kg in pixel (without type 2 services). Content of carbon is not negligible, but activation in carbon is by order of magnitude less then in aluminum [report 1] and will hardly produce a noticeable contribution.

#### 3.3.5 SCT

SCT geometry and materials were adopted from the file prepared by Ivan Bedajanek [15]. Geometry and materials of SCT Barrel are given in Tables 9 and 10. Geometry and materials of SCT Forward are given in Tables 11 and 12. Concentration of cobalt was assumed to make up 2% of nickel weight. Major source of Ni (and Co) is nickel-plated Type 2 cables and stainless steel cooling pipes.

The description of SCT Forward is far from being complete. Density of materials in forward modules was assumed to be the same as in barrel modules. A more correct estimation for material inventory is highly desirable.

#### 3.3.7 TRT

TRT geometry and materials were adopted from the file prepared by Ivan Bedajanek [16]. Geometry and materials of SCT Barrel are given in Tables 13 and 14. Concentration of cobalt was assumed to make up 2% of nickel weight. Major source of Ni (and Co) is nickel-plated Type 2 cables and stainless steel cooling pipes.

#### 3.4 Operation scenario

Two scenarios of LHC operation were assumed for the purpose of the study.

- LHC is operated at high luminosity during T=100d.
- LHC is operated for 10 years-- 120 days per year run at high luminosity and the rest of the year LHC is shut down.

In the both cases, activation was studied for cooling time t= 1d, 3d, 5d, 7d, 15d, 30d, and 100 d.

# 4. Results

#### 4.1 Activation of materials/systems

Results of activation study of Inner Detector systems and VA beam pipe are given in Tables 15-24. The results are expressed in terms of gamma-equivalent induced by lowenergy neutrons and high-energy hadrons. Contribution of every individual material is given in percents to subtotal (neutron or hadron activation). The last row is the total gamma-equivalent induced by both neutrons and hadrons. The results are given for T=100 days, 10 years and t= 1, 3, 5, 7, 15, 30, and 100 days after shutdown. Since the volume of information is too large, here we have to limit consideration to cooling time t= 7 days.

Activation in VA beam-pipe section is at least by order of magnitude larger than any ID subsystem and needs special consideration. We advisedly exclude it from the further analysis of activation because VA will be removed to allow long access to the Inner Detector. Nevertheless, contribution of VA to dose rate around ID is taken into account (see section 4.2).

Distribution of gamma-equivalent among ID systems is given on Fig. 1. On can see that activation is distributed rather uniformly amongst the systems with the only exception for VI beam-pipe. Activation in every individual system after 10 years of operation is about twice as high than after 100 days (high luminosity was assumed for both operation scenarios, see 3.4).

Despite total gamma-equivalents of all systems is rather similar, it is hardly possible to conclude that all the systems will produce the similar dose rate. In addition to total gamma-equivalent, one should take into account also dimensions of the system, distribution of activity over the volume, and distance to the accessible point. From a very general idea, it is very likely that services will produce greater contribution to the dose rate, as their volume is much smaller.

Contribution of low-energy neutrons and high-energy hadrons to activation of separate ID systems is given on Fig. 2. One can see that activation in every individual system is dominated by hadrons. Contribution of low energy neutrons to total activation depends on particular system and also varies with operational scenario. For example, relative contribution of neutrons grows up with operation time for all the services and either remains the same or decreases for detectors (TRT, SCT, and Pixel).

Contribution of individual materials to total gamma-equivalent induced in the Inner Detector is given on Fig. 3. The most important materials are aluminum, iron, cobalt, nickel, copper, and silver. At that, low-energy neutrons dominate activation of cobalt and silver. It is interesting to note that amount of cobalt is by 2000 times less than copper (Fig. 4), while their contributions are similar. Such a great relative importance of cobalt can be explained by high thermal neutrons activation cross-section and high gamma-ray emission (2.5 MeV per decay) of the activation product <sup>60</sup>Co. It is <sup>60</sup>Co that will dominate activation

for cooling time exceeding 1 year, as its half decay (5.25 year) is rather great comparing to many others activation products.

It is very likely that lack of information on the exact content of cobalt and silver in the Inner Detector materials is a significant source of uncertainty. In the study we assume that content of cobalt is to correlate with nickel. Concentration of cobalt was assumed to make up 2% of nickel weight (or 2000 ppm in stainless steel). Real content of cobalt in stainless steel is unknown and may vary significantly from the assumption. Content of cobalt in other materials is also unknown. For example, an assumption that cobalt content in copper makes up 200 ppm, will increase the present estimation by factor of 1.5. Content of others important impurities in copper are silver and antimony (of order 2000 ppm each) also need to be studied.

#### 4.2 Induced dose rate

Contribution of different ID systems, VA beam-pipe, and LAr calorimeter to total dose rate around Inner Detector for the long accesses scenario are given in Tables 25-36. The LAr End Cap is shifted by 325 cm along Z-axis. The dose rate are given for the following points:

| R= 175 mm, | Z= 3340 mm |
|------------|------------|
| R= 400 mm, | Z= 3443 mm |
| R= 700 mm, | Z= 3440 mm |
| R= 175 mm, | Z= 3800 mm |
| R= 400 mm, | Z= 3800 mm |
| R= 700 mm, | Z= 3800 mm |
|            |            |

Analysis of the data has shown that the major contributors to the dose rate are VA beam-pipe and LAr End Cap. When the last two are removed, Pixel detector and ID services will determine dose rate.

Additional information on dose rate fields in the long access scenario are given in Addendum 1. The following opening layouts are studied by the moment:

- 1. LAr End Cap shifted by 325 cm along Z-axis, all ID systems and VA beampipe are in place;
- 2. LAr End Cap is removed, all ID systems and VA beam-pipe are in place;
- 3. LAr End Cap and VA beam-pipe are removed, all ID systems are in place;
- 4. LAr End Cap and VA beam-pipe are removed, Pixel Detector and VI are removed, others ID systems are in place;

Other opening layouts are to be studied:

- 5. Pixel and VI, SCT forward, and TRT End Cap with forward services are removed on one side to allow access inside LAr Barrel;
- 6. All ID systems in place except for TRT C.

Dose rate fields from dismantled VA beam-pipe are given in Addendum 2. Dose rate fields from dismantled Pixel & VI beam-pipe are given in Addendum 3. Dose rate fields from LAr Barrel and End Cap are given in Addendum 4.

### 4.3 Comparison of activation dose rate from SCT Barrel

Doses from SCT Barrel have been estimated by C.Buttar et al in ATL-INDET-2002-013 [17]. Despite the authors have found that SCT Barrel does not pose any serious problems from radiological point of view, the results are valuable for the purpose of comparison with the results of the present study.

Only barrel modules were taken into account in the ATL-INDET-2002-013. The estimation was made at assumption of average beam-luminosity of  $5\times10^{33}$  cm<sup>-2</sup>s<sup>-1</sup>. LHC operation year was defined as 180 days running followed by 185 days of shutdown. Radionuclide production rate for innermost layer of barrel modules was produced with the Monte Carlo particle transport code FLUKA and used for other layers. Gamma and beta dose rate were reported at the distance of 10 cm, 30 cm, and 100 cm from both cylindrical and front surface.

We produced estimation of gamma dose rate from barrel modules taking into account the mentioned assumptions made by C.Buttar et al. The results are given in tables 37-38. Quite a satisfactory agreement (within 20-40%) was found. This gives us some confidence that the data and codes used in the current study are reliable.

## 5. Conclusions

Major contributors to the dose rate in ID general long access layout are VA beampipe and LAr End Cap. Contact gamma dose rate on the surface of VA makes up to 5 mSv/h for cooling time 5 days. Dose rate near LAr End Cap (without VA) makes up few hundreds  $\mu$ Sv/h. These will pose serious problems for access to the Inner Detector.

When VA beam-pipe and LAr End Cap are removed, the Pixel detector and ID services will determine dose rate. Gamma dose rate near Pixel PP1 may exceed 100  $\mu$ Sv/h for cooling time 5 days.

The current study has shown that spallation activation induced by high-energy hadrons produces dominant contribution to gamma dose rate from the Inner Detector. Low-energy neutrons produce a comparable contribution to activation of ID services after a long operation time and cooling time exceeding few weeks.

The most important ID materials contributing to gamma dose rate are aluminum, iron, cobalt, nickel, copper, and silver. Low-energy neutrons dominate activation of cobalt and silver, while high-energy hadrons dominate activation of aluminum, nickel, and copper.

Major sources of silver are SCT modules and electronics. Silver inventory seems to be incomplete and needs further verification, especially for SCT Forward. Another possible source of silver are copper cables, as silver is usual impurity in copper.

Major source of cobalt is stainless steel and other nickel-based materials. Actual content of cobalt is unknown that may result in considerable uncertainty of dose rate estimations from ID services for cooling time exceeding few months. Though, the dose rate from the services after 100 d cooling does not exceed few tens  $\mu$ Sv/h.

# 6. References

1. V.Hedberg, Long access in ATLAS, pages 60-70

http://atlasinfo.cern.ch/Atlas/TCOORD/Activities/CommonSys/Shielding/Activation /access long new.pdf

2. Borisov S.E., Kudryavtseva A.V., Leschenko A.V. at. al. VVER-500 as a source of induced activity resulting from decommissioning. Atomic Energy, Translated from Russian Original Vol.77, No.4, October, 1994. ISSN 1063-4258, pp.802-807

3. Engovatov I.A., Mashkovich V.P., Orlov Yu.V. at.al. Radiation Safety under Decommissioning of Nuclear Reactors of Civilian and Military Purposes/ ISTC Project #465-97

4. Mynat F., Engle W.Jr., Gritzner M. et.al. The DOT-III Two-Dimensional Discrete Ordinates Transport Code. ORNL-TM-4280, 1973

5. CASK, 40 groups coupled neutron and gamma-ray cross section data. RSIC data library DLC-23, 1973

6. ~shupe/w1/morev/ on atlas.cern.ch

7. Yu.N.Shubin, V.P.Lunev, A.Yu.Konobeyev, A.I.Ditjuk, "Cross section data library MENDL-2 to study activation and transmutation of materials irradiated by nucleons of intermediate energies", report INDC(CPP)-385 (IAEA, May 1995)

8. A.S.Botvina, A.V.Dementyev, o.N.Smirnova, N.M.Sobolevsky. International Codes and Models Intercomparison for Intermediate Energy Activation Yields. Report of the Institute for Nuclear Research of RAN. Moscow, 1995

9. V.G.Semenov, N.M.Sobolevsky. Approximation of Radionuclides Production Cross-Sections in Proton Induced Nuclear Reactions. Report on ISTC Project #187. Moscow, 1998

10. www.matls.com

11. V.A. Klimanov, E.I. Kulakova, M.N. Morev and V.K. Sakharov, ACTIVATION STUDIES IN THE ATLAS DETECTOR, ISTC Project #1800, Addendum III http://atlasinfo.cern.ch/Atlas/TCOORD/Activities/CommonSys/Shielding/Activation /antimon in pb.pdf

12. DOSES FROM THE LAR BEAMPIPE, Report by M.N. Morev

http://atlasinfo.cern.ch/Atlas/TCOORD/Activities/CommonSys/Shielding/Activation /lar beampipe.pdf

13. MATERIAL DESCRIPTION OF THE PIXEL DETECTOR, Spreadsheet by M. Olcese

http://atlasinfo.cern.ch/Atlas/TCOORD/Activities/CommonSys/Shielding/Activation /inventory\_17\_01\_2002.xls

14. Report by I. Bedajanek, <u>The PIXEL detector</u>,

http://atlasinfo.cern.ch/Atlas/TCOORD/Activities/CommonSys/Shielding/Activation/pixel.doc

15. Report by I. Bedajanek, <u>The SCT detector</u>

http://atlasinfo.cern.ch/Atlas/TCOORD/Activities/CommonSys/Shielding/Activation /sct.doc

16. Report by I. Bedajanek, The TRT detector

http://atlasinfo.cern.ch/Atlas/TCOORD/Activities/CommonSys/Shielding/Activation/trt.doc 17. Estimating induced-activation of SCT barrel-modules in the ATLAS radiation environment. ATL-INDET-2002-013, Buttar, C; Cindro, V; Dawson, I; Mandic, I; Moraes, A. <u>http://weblib.cern.ch/cgi-bin/showfull?base=ATLATL&sysnb=0002022</u>



Fig. 1 Gamma-equivalent vs. ID subsystems at cooling time t=7 days





Fig. 2 Gamma-equivalent induced by neutrons/hadrons in ID subsystems for exposure time (a) T=100 d and (b) T=10 y, cooling time t =7 days



Fig. 3 Gamma-equivalent vs. ID materials cooling time t=7 days



Fig. 4 Material break down of Inner Detector

Geometry description of the LAr Barrel Calorimeter

| El EMENT                                        | Matorial |       |        |        |        |               |
|-------------------------------------------------|----------|-------|--------|--------|--------|---------------|
|                                                 |          |       | 72[om] |        | D2[om] | Waterial      |
| Perrel inner warm well                          | 1        |       | 204    |        |        |               |
| Darrel inner vall wall eastion 1                | 1        | 0     | 304    | 110    | 120 5  |               |
| Barrel inner cold wall section 1                | 2        | 7.5   | 1.5    | 134.1  | 100.0  |               |
| Barrel inner cold wall section 2                | 3        | 7.5   | 40     | 134.9  | 100.0  |               |
| Barrel inner cold wall section 5                | 4        | 40    | 105    | 130.0  | 100.0  |               |
| Darrel inner cold wall section 4                | 5        | 112   | 190    | 130.4  | 130.5  |               |
| Barrel inner cold wall section 5                | 0        | 195   | 240    | 100.0  | 130.5  |               |
| Barrel inner cold wall section of               | /        | 240   | 302.3  | 130.0  | 130.0  |               |
| Barrel inner cold corner section 1              | 0        | 302.3 | 310.1  | 130.5  | 100.0  |               |
| Barrel inner cold corner section 2              | 9        | 205.2 | 320.3  | 107.1  | 150.5  |               |
| Barrel cold well and inner costion              | 10       | 323.3 | 320.7  | 157.1  | 100.00 |               |
| Barrel cold wall end inner section              | 10       | 320.7 | 328.7  | 100.00 | 185    |               |
| Barrel cold wall end outer section              | 12       | 320.7 | 330.2  | 100    | 219    |               |
| Solenoid<br>Dreebewer detector                  | 13       | 0     | 200    | 123.1  | 142.0  |               |
| Presnower detector                              | 14       | 0     | 300.8  | 140.5  | 143.6  | PRESHOWER     |
| preshower                                       | 15       | 0     | 300.8  | 138.5  | 140.5  | LIQ_ARGON     |
| Middle accordion volume                         | 16       | 0     | 134.1  | 151    | 197.9  | LAr EM 1.8 PB |
| North accordion volume wedge                    | 17       | 134.1 | 145    | 157.2  | 197.9  | LAr EM 1.8 PB |
| before eta=.8                                   |          |       |        |        |        |               |
|                                                 | 18       | 145   | 155    | 168.9  | 197.9  | LAr EM 1.8 PB |
|                                                 | 19       | 155   | 165    | 180.1  | 197.9  | LAr EM 1.8 PB |
|                                                 | 20       | 165   | 175.8  | 191.5  | 197.9  | LAr EM 1.8 PB |
| North accordion volume wedge<br>after eta=.8    | 21       | 134.1 | 145    | 151    | 157.2  | LAR EM 1.2 PB |
|                                                 | 22       | 145   | 155    | 151    | 168.9  | LAR EM 1.2 PB |
|                                                 | 23       | 155   | 165    | 151    | 180.1  | LAR EM 1.2 PB |
|                                                 | 24       | 165   | 175.8  | 151    | 191.5  | LAR EM 1.2 PB |
| North accordion volume cylinder<br>after eta=.8 | 25       | 175.8 | 300.8  | 151    | 197.9  | LAR EM 1.2 PB |
| North accordion end volume (tapered)            | 26       | 300.8 | 315    | 151    | 197.9  | LAR EM 1.2 PB |
| Accordion front materials                       | 27       | 0     | 300.8  | 144    | 151    | EM IN TAB     |
| Accordion exit materials                        | 28       | 0     | 315    | 197.9  | 214    | EM OUT TAB    |
| Barrel outer cold wall                          | 29       | 0     | 299.6  | 214    | 217    | ALUMINUM      |
| Barrel outer cold wall vertical                 | 30       | 292.6 | 299.6  | 217    | 228    | ALUMINUM      |
| Barrel cold wall flange                         | 31       | 299.6 | 322.7  | 221.5  | 226.5  | ALUMINUM      |
| Barrel cold wall flange connector               | 32       | 322.7 | 331.7  | 219    | 228    | ALUMINUM      |
| Liquid at end of EM accordion                   | 33       | 315   | 326.7  | 156.55 | 219    | LIQ ARGON     |
| Barrel outer warm wall                          | 34       | 0     | 285    | 222    | 225    | ALUMINUM      |
| Barrel outer warm vertical                      | 35       | 285   | 290    | 222    | 271.1  | ALUMINUM      |
| Barrel outer warm horizontal                    | 36       | 285   | 339    | 271.1  | 277.5  | ALUMINUM      |
| flange                                          |          |       |        |        |        |               |
| Barrel warm flange connector 1                  | 37       | 334   | 339    | 251.6  | 271.1  | ALUMINUM      |
| Barrel warm flange connector 2                  | 38       | 339   | 340.5  | 251.6  | 269    | ALUMINUM      |
| End warm vertical bulkhead                      | 39       | 336.7 | 340.5  | 185    | 251.6  | ALUMINUM      |
|                                                 | 40       | 338.5 | 340.5  | 142    | 185    | ALUMINUM      |
|                                                 | 41       | 339.3 | 340.5  | 122.02 | 142    | ALUMINUM      |
| Barrel warm front corner                        | 42       | 315   | 340.5  | 120.8  | 122.02 | ALUMINUM      |
| Barrel warm front corner                        | 43       | 312.5 | 315    | 115    | 117.1  | ALUMINUM      |
| Barrel warm front corner                        | 44       | 304   | 316    | 117.3  | 120.8  | ALUMINUM      |
| Barrel warm front corner                        | 45       | 304   | 306.5  | 115    | 117.3  | ALUMINUM      |

|         | MATERIAL |          |          |          |            |            |           |          |  |  |  |  |
|---------|----------|----------|----------|----------|------------|------------|-----------|----------|--|--|--|--|
| ELEMENT | ALUM     | COILMIX  | PRE      | LIQ      | LAr EM 1.8 | LAR EM 1.2 | EM IN TAB | EM OUT   |  |  |  |  |
|         |          |          | SHOWER   | ARGON    | PB         | PB         |           | TAB      |  |  |  |  |
| Н       |          | 1.02E-03 | 6.96E-03 |          | 1.81E-03   | 2.98E-03   | 6.24E-03  | 3.71E-03 |  |  |  |  |
| С       |          |          | 3.06E-03 |          | 2.82E-03   | 1.65E-02   |           |          |  |  |  |  |
| 0       |          | 4.80E-03 | 7.91E-03 |          | 8.75E-04   | 9.60E-04   | 2.93E-02  | 1.75E-02 |  |  |  |  |
| Si      | 2.45E-04 | 1.39E-03 | 2.14E-03 |          | 2.54E-04   | 2.78E-04   | 8.51E-03  | 5.06E-03 |  |  |  |  |
| AI      | 6.02E-02 | 3.15E-02 |          |          |            |            |           |          |  |  |  |  |
| Ar      |          |          | 6.49E-03 | 2.11E-02 | 1.25E-02   | 1.37E-02   | 3.35E-03  | 8.96E-03 |  |  |  |  |
| Ca      |          | 6.91E-04 | 1.06E-03 |          | 1.26E-04   | 1.38E-04   | 4.22E-03  | 2.51E-03 |  |  |  |  |
| Ti      | 5.37E-05 |          |          |          |            |            |           |          |  |  |  |  |
| Cr      | 6.60E-05 |          |          |          | 1.70E-03   | 2.20E-03   |           | 4.25E-03 |  |  |  |  |
| Mn      | 3.12E-04 |          |          |          | 1.79E-04   | 2.31E-04   |           | 4.47E-04 |  |  |  |  |
| Fe      | 1.23E-04 |          |          |          | 6.24E-03   | 8.08E-03   | 1.17E-07  | 1.56E-02 |  |  |  |  |
| Ni      |          |          |          |          | 8.78E-04   | 1.14E-03   |           | 2.20E-03 |  |  |  |  |
| Со      |          |          |          |          | 1.76E-05   | 2.27E-05   |           | 4.39E-05 |  |  |  |  |
| Cu      | 2.70E-05 | 8.09E-03 | 5.11E-03 |          | 2.29E-05   | 1.68E-05   | 4.10E-06  | 2.03E-06 |  |  |  |  |
| Zn      | 6.56E-05 |          |          |          | 2.79E-07   | 2.04E-07   | 4.98E-08  | 2.47E-08 |  |  |  |  |
| As      |          |          |          |          | 2.43E-07   | 1.78E-07   | 4.35E-08  | 2.16E-08 |  |  |  |  |
| Ag      |          |          |          |          | 3.38E-06   | 2.47E-06   | 6.04E-07  | 3.00E-07 |  |  |  |  |
| Sn      |          |          |          |          | 1.53E-07   | 1.12E-07   | 2.74E-08  | 1.36E-08 |  |  |  |  |
| Sb      |          |          |          |          | 1.50E-07   | 1.09E-07   | 2.68E-08  | 1.33E-08 |  |  |  |  |
| Pb      |          |          |          |          | 8.78E-03   | 6.43E-03   | 1.57E-03  | 7.79E-04 |  |  |  |  |
| Bi      |          |          |          |          | 4.36E-07   | 3.19E-07   | 7.79E-08  | 3.87E-08 |  |  |  |  |

Composition of LAr Barrel materials

| ELEMENT                           | Element | ELEME  | NT GEOME | TRY (ring | g/disk) | Material   |
|-----------------------------------|---------|--------|----------|-----------|---------|------------|
|                                   | ID      | Z1[cm] | Z2[cm]   | R1[cm]    | R2[cm]  |            |
| EC EM inner volume                | 1       | 367.7  | 385      | 30.7      | 47      | EC EMI     |
|                                   | 2       | 385    | 402      | 32.1      | 56.2    | EC EMI     |
|                                   | 3       | 402    | 419.5    | 33.5      | 64.9    | EC EMI     |
| EC EM outer volume                | 4       | 367.7  | 385      | 47        | 208.9   | EC EMO     |
|                                   | 5       | 385    | 402      | 56.2      | 208.9   | EC EMO     |
|                                   | 6       | 402    | 419.5    | 64.9      | 208.9   | EC EMO     |
| G10 support bars inside EC EM     | 7       | 367.7  | 385      | 28.9      | 30.7    | G10        |
|                                   | 8       | 385    | 402      | 30.3      | 32.1    | G10        |
|                                   | 9       | 402    | 419.5    | 31.7      | 33.5    | G10        |
| EC HEC1A volume north             | 10      | 426.5  | 456.7    | 37        | 208.9   | EC HAD1    |
| EC HEC1B volume north             | 11      | 456.7  | 510.9    | 47.3      | 208.9   | EC HAD2    |
| EC HEC2 volume north              | 12      | 512    | 610.8    | 47.3      | 208.9   | EC HAD3    |
| EC front bumper block             | 13      | 374.7  | 379.2    | 18.5      | 23.8    | G10        |
| EC cylindrical support tube       | 14      | 466 85 | 635      | 45.7      | 46.5    | ALUMINUM   |
| Liquid argon layer outside the    | 15      | 466.85 | 635      | 46.5      | 47.3    |            |
| support tube                      | 10      | 100.00 | 000      | 10.0      | 17.0    |            |
| EC support tube back flange at    | 16      | 635    | 644.5    | 46.5      | 49.5    | ALUMINUM   |
| rear of 5                         |         |        |          |           |         |            |
| EC Plug 1 - main copper           | 17      | 627.5  | 644.5    | 59        | 193.5   | PLUG BRASS |
| absorber at back of EC            |         |        |          |           |         |            |
| EC Plug 2 – small plug at back of | 18      | 610.8  | 623      | 47.5      | 59.5    | PLUG BRASS |
| HEC2 near beam-line               |         |        |          |           |         |            |
| Cable fill in pocket at back of   | 19      | 623    | 644.5    | 49.5      | 59      | LAR CABLES |
| cylindrical transition            |         | 004.0  | 0077     |           |         |            |
| Liquid argon and cables in front  | 20      | 361.2  | 367.7    | 30        | 208.9   | LAR CABLES |
| Liquid argon and cables outside   | 21      | 261.2  | 644 5    | 208.0     | 212 /   |            |
| the hadronic modules              | 21      | 301.2  | 044.5    | 200.9     | 212.4   | LAR CABLES |
| Liquid argon and cables at rear   | 22      | 610.8  | 627.5    | 69        | 208.9   | LAR CABLES |
| of HEC2                           |         | 010.0  | 021.0    | 00        | 200.0   |            |
| Liquid argon and cables at rear   | 23      | 419.5  | 426.5    | 37        | 208.9   | LAR CABLES |
| of EMEC                           | -       |        |          | _         |         |            |
| Liquid argon and cables at rear   | 24      | 510.9  | 512      | 47.3      | 208.9   | LAR CABLES |
| of first hadronic compartment     |         |        |          |           |         |            |
| EC front warm wall                | 25      | 350    | 351.5    | 18.2      | 226     | ALUMINUM   |
| Poly around beam pipe at front    | 26      | 350    | 362      | 6         | 18.2    | POLYLITH   |
| of EC (plugging FCAL hole)        |         |        |          |           |         |            |
| EC flange block at front of 2X    | 27      | 351.5  | 374.7    | 18.2      | 19.7    | ALUMINUM   |
| (2Y)                              |         |        |          |           |         |            |
| EC warm wall north nearer I.P.    | 28      | 374.7  | 454      | 18.1      | 18.5    | ALUMINUM   |
| (2X)                              |         |        |          |           |         |            |
| Connecting washer, 2X to 2 (2Z)   | 29      | 454    | 455      | 5.1       | 18.5    | ALUMINUM   |
| EC inner warm wall                | 30      | 454    | 662.5    | 4.8       | 5.1     | ALUMINUM   |
| EC outer warm wall                | 31      | 351.5  | 616      | 223       | 226     | ALUMINUM   |
| EC outer warm wall vertical       | 32      | 616    | 619      | 223       | 240.5   | ALUMINUM   |
| EC outer warm wall horizontal     | 33      | 616    | 662.5    | 240.5     | 247.5   | ALUMINUM   |
| flange                            |         |        |          |           |         |            |

Geometry description of the LAr End Cap Calorimeter

Table 3 (continuation)

| ELEMENT                                                | Element | ELEME  |        | TRY (rine | a/disk) | Material   |
|--------------------------------------------------------|---------|--------|--------|-----------|---------|------------|
|                                                        | ID      | Z1[cm] | Z2[cm] | R1[cm]    | R2[cm]  |            |
| EC rear warm wall                                      | 34      | 662.5  | 668.5  | 4.8       | 247.5   | ALUMINUM   |
| EC front cold wall                                     | 35      | 354.7  | 361.2  | 22.8      | 217.5   | ALUMINUM   |
| EC inner cold wall north                               | 36      | 464.35 | 644.5  | 6.1       | 6.7     | ALUMINUM   |
| EC inner cold wall north front                         | 37      | 374.7  | 461.85 | 26.8      | 27.8    | ALUMINUM   |
| near I.P.                                              |         |        |        |           |         |            |
| EC flange                                              | 38      | 361.2  | 374.7  | 22.8      | 27.8    | ALUMINUM   |
| EC outer cold wall                                     | 39      | 361.2  | 619    | 214       | 217.5   | ALUMINUM   |
| EC outer back corner cold wall                         | 40      | 619    | 644.5  | 214       | 224.5   | ALUMINUM   |
| EC back cold wall                                      | 41      | 644.5  | 658.3  | 6.1       | 224.5   | ALUMINUM   |
| EC inner back cold wall                                | 42      | 658.3  | 662.5  | 9.5       | 13.1    | ALUMINUM   |
| EC back cold wall thin section                         | 43      | 658.3  | 659    | 6.1       | 9.5     | ALUMINUM   |
| near beam-ine                                          |         |        |        |           |         |            |
| FC EM volume north                                     | 44      | 466.85 | 532    | 7.2       | 45      | FC EM      |
| Cold wall in front of EM                               | 45      | 461.85 | 464.35 | 6.1       | 45.7    | ALUMINUM   |
| Liquid argon and cables outside                        | 46      | 480.5  | 644.5  | 45        | 45.7    | LAR CABLES |
| FCAL                                                   |         |        |        |           |         |            |
| Liquid argon and cables behind<br>EM                   | 47      | 532    | 532.5  | 7.9       | 45      | LAR CABLES |
|                                                        | 48      | 532.5  | 577.65 | 8.9       | 44      | FC HAD1    |
|                                                        | 49      | 532.5  | 577.65 | 7.9       | 8.9     | COPPER     |
|                                                        | 50      | 532.5  | 577.65 | 44        | 45      | COPPER     |
| Liquid argon and cables at back of FC H1               | 51      | 577.65 | 580.15 | 8.6       | 45      | LAR CABLES |
|                                                        | 52      | 580.15 | 604.7  | 9.6       | 44      | FC HAD1    |
|                                                        | 53      | 580.15 | 577.65 | 8.6       | 9.6     | COPPER     |
|                                                        | 54      | 580.15 | 577.65 | 44        | 45      | COPPER     |
| Liquid argon and cables at back of FC H2               | 55      | 604.7  | 607.2  | 9.5       | 45      | LAR CABLES |
| Plug3                                                  | 56      | 607.2  | 639.6  | 9.5       | 44.7    | PLUG BRASS |
| Notch                                                  | 57      | 639.6  | 644.5  | 14.5      | 44.7    | PLUG BRASS |
| Services in gap between electronics crates and fingers | 58      | 612    | 667.5  | 331.3     | 388     | GAP MAT    |

Geometry description of the LAr End Cap Calorimeter

|         |         |         |            |            |            |               |               |         | L          |              |         |         |         |                 |         |
|---------|---------|---------|------------|------------|------------|---------------|---------------|---------|------------|--------------|---------|---------|---------|-----------------|---------|
| ELEMENT | EC EMI  | EC EMO  | EC<br>HAD1 | EC<br>HAD2 | EC<br>HAD3 | LAR<br>CABLES | PLUG<br>BRASS | FC EM   | FC<br>HAD1 | POLY<br>LITH | GAP MIX | G10     | ALUM    | LIQUID<br>ARGON | COPPER  |
| Н       | 2.8E-02 | 3.2E-02 |            |            |            | 6.5E-04       | 2.0.00        |         |            | 7.7E-02      | 3.6E-02 | 1.5E-03 |         |                 |         |
| Li      |         |         |            |            |            |               |               |         |            | 2.2E-03      |         |         |         |                 |         |
| C       | 2.0E-03 | 2.3E-03 |            |            |            |               |               |         |            | 3.7E-02      | 2.1E-02 |         |         |                 |         |
| 0       |         |         |            |            |            | 6.2E-03       |               |         |            |              | 3.5E-03 | 1.1E-02 |         |                 |         |
| F       |         |         |            |            |            |               |               |         |            | 2.2E-03      |         |         |         |                 |         |
| Al      |         |         |            |            |            |               |               |         |            |              |         |         | 6.0E-02 |                 |         |
| Si      |         |         |            |            |            | 1.3E-03       |               |         |            |              |         | 5.7E-02 |         |                 |         |
| Ar      | 1.3E-02 | 1.3E-02 | 5.1E-03    | 5.4E-03    | 3.0E-03    | 1.8E-02       |               | 3.1E-04 | 3.3E-03    |              |         |         |         | 2.1E-02         |         |
| Ca      |         |         |            |            |            | 8.9E-04       |               |         | 7.5E-04    |              |         | 4.0E-02 |         |                 |         |
| Ti      |         |         |            |            |            |               |               |         |            |              |         |         | 5.4E-05 |                 |         |
| Cr      |         |         |            |            |            |               |               |         |            |              | 6.3E-03 |         | 6.6E-05 |                 |         |
| Mn      |         |         |            |            |            |               |               |         |            |              | 6.6E-04 |         | 3.1E-04 |                 |         |
| Fe      | 4.6E-03 | 5.3E-03 |            |            |            |               |               |         |            |              | 2.3E-02 |         | 1.2E-04 |                 |         |
| Ni      |         |         |            |            |            |               |               |         | 1.4E-03    |              | 3.2E-03 |         |         |                 |         |
| Co      | 1.2E-05 | 1.4E-05 |            |            |            |               |               |         | 2.9E-05    |              | 6.2E-05 |         |         |                 |         |
| Zn      | 3.2E-07 | 2.8E-07 |            |            |            |               | 1.6E-03       |         |            |              |         |         | 6.6E-05 |                 |         |
| Cu      | 2.6E-05 | 2.3E-05 | 6.4E-02    | 6.3E-02    | 7.3E-02    |               | 7.2E-02       | 7.4E-02 | 1.1E-02    |              | 1.3E-02 |         | 2.7E-05 |                 | 8.5E-02 |
| As      | 2.8E-07 | 2.5E-07 |            |            |            |               |               |         |            |              |         |         |         |                 |         |
| Sb      | 1.7E-07 | 1.5E-07 |            |            |            |               |               |         |            |              |         |         |         |                 |         |
| Sn      | 1.8E-07 | 1.5E-07 |            |            |            |               | 3.1E-03       |         |            |              |         |         |         |                 |         |
| Ag      | 3.9E-06 | 3.4E-06 |            |            |            |               |               |         |            |              |         |         |         |                 |         |
| W       |         |         |            |            |            |               |               |         | 4.2E-02    |              |         |         |         |                 |         |
| Pb      | 1.0E-02 | 8.9E-03 |            |            |            |               | 7.5E-04       |         |            |              |         |         |         |                 |         |

Composition of LAr End Cap calorimeter

| ## | Z <sub>min</sub> , cm                  | Z <sub>max</sub> , cm | R <sub>min</sub> , cm | R <sub>max</sub> , cm | Material | Mass, | Comment    |  |  |  |
|----|----------------------------------------|-----------------------|-----------------------|-----------------------|----------|-------|------------|--|--|--|
|    |                                        |                       |                       |                       |          | kg    |            |  |  |  |
| 1  | 0                                      | 343.9                 | 3.38                  | 3.46                  | Be       | 1.093 | Outer tube |  |  |  |
| 2  | 0                                      | 355                   | 2.9                   | 2.98                  | Be       | 0.970 | Inner tube |  |  |  |
| 3  | 355                                    | 365                   | 2.9                   | 2.98                  | Al       | 0.040 | Inner tube |  |  |  |
| 4  | 350.5                                  | 357.5                 | 3.38                  | 3.46                  | Al       | 0.032 | Outer tube |  |  |  |
| 5  | 343.9                                  | 350.5                 | 3.38                  | 3.46                  | Al       | 0.031 | Bellows (* |  |  |  |
| 6  | 363.6                                  | 365                   | 2.98                  | 4.3                   | Al       | 0.114 | Flange     |  |  |  |
| (* | (* - under study now – assumed as tube |                       |                       |                       |          |       |            |  |  |  |

Material zones of the VI beam pipe section (right half)

# Table 6

| ## | Z <sub>min</sub> , cm | Z <sub>max</sub> , cm | R <sub>min</sub> , cm | R <sub>max</sub> , cm | Material | Mass, kg | Comment        |
|----|-----------------------|-----------------------|-----------------------|-----------------------|----------|----------|----------------|
| 1  | 365                   | 366.4                 | 2.9                   | 4.3                   | SS 316L  | 0.346    | Flange         |
| 2  | 366.4                 | 387.6                 | 2.9                   | 2.98                  | SS 316L  | 0.063    | Tube           |
| 3  | 373.2                 | 373.28                | 2.98                  | 8.3                   | SS 316L  | 0.075    | Pump wall      |
| 4  | 373.28                | 378.8                 | 8.23                  | 8.3                   | SS 316L  | 0.206    | Pump wall      |
| 5  | 378.8                 | 378.88                | 2.98                  | 8.3                   | SS 316L  | 0.262    | Pump wall      |
| 6  | 374.8                 | 378                   | 4.5                   | 4.7                   | SS 316L  | 0.317    | Pump electrode |
| 7  | 374.8                 | 378                   | 6.8                   | 7                     | SS 316L  | 0.224    | Pump electrode |
| 8  | 387.6                 | 395.8                 | 2.9                   | 3.04                  | SS 316L  | 0.472    | Bellows        |
| 9  | 395.8                 | 415.1                 | 2.9                   | 2.98                  | SS 316L  | 0.045    | Tube           |
| 10 | 415.1                 | 423.3                 | 2.9                   | 3.04                  | SS 316L  | 0.472    | Bellows        |
| 11 | 423.3                 | 855                   | 2.9                   | 2.98                  | SS 316L  | 0.045    | Tube           |
| 12 | 855                   | 863.2                 | 2.9                   | 3.04                  | SS 316L  | 0.317    | Bellows        |
| 13 | 863.2                 | 870                   | 2.9                   | 2.98                  | SS 316L  | 0.262    | Tube           |
| 14 | 868.6                 | 870                   | 2.98                  | 4.3                   | SS 316L  | 0.206    | Flunge         |
| 15 | 428.9                 | 849                   | 3.92                  | 4                     | SS 316L  | 0.075    | Tube           |

Material zones of the VA beam pipe section

| Table ' | 7 |
|---------|---|
|---------|---|

| ELEMENT                     | Element | ELEM   |        | IETRY (ring | g/disk) |
|-----------------------------|---------|--------|--------|-------------|---------|
|                             | ID      | Z1[cm] | Z2[cm] | R1[cm]      | R2[cm]  |
| B-layer                     | 1       | 0      | 40     | 4.55        | 7.4     |
| Layer 1                     | 2       | 0      | 40     | 8.3         | 11.1    |
| Layer 2                     | 3       | 0      | 40     | 11.7        | 14.4    |
| Disk 1                      | 4       | 49     | 50     | 8.5         | 14.8    |
| Disk 2                      | 5       | 57.5   | 58.5   | 8.5         | 14.8    |
| Disk 3                      | 6       | 64.5   | 65.5   | 8.5         | 14.8    |
| B-layer end                 | 7       | 40     | 44.2   | 4.55        | 7.4     |
| Layer 1 end                 | 8       | 40     | 44.2   | 8.3         | 11.1    |
| Layer 2 end                 | 9       | 40     | 44.2   | 11.7        | 14.4    |
| Disk 1 cooling connections  | 10      | 49     | 50     | 14.8        | 17      |
| Disk 2 cooling connections  | 11      | 57.5   | 58.5   | 14.8        | 17      |
| Disk 3 cooling connections  | 12      | 64.5   | 65.5   | 14.8        | 17      |
| Barrel radial services      | 13      | 44.2   | 48.4   | 4.55        | 17      |
| Barrel/disk type 0 services | 14      | 44.2   | 70     | 17          | 21.5    |
| along frame                 | 45      | 10     | 44.0   | 00 5        | 04.5    |
| Outer frame connections     | 15      | 42     | 44.2   | 20.5        | 21.5    |
|                             | 16      | 70     | 107    | 17          | 21.5    |
| l ype 1 services            | 1/      | 107    | 328    | 1/          | 21.5    |
| PP1 zone 1                  | 18.1    | 328    | 333.5  | 20.5        | 22.5    |
| PP1 zone 2                  | 18.2    | 328    | 333.5  | 11.5        | 20.5    |
| PP1 zone 3                  | 18.3    | 328    | 333.5  | 7.5         | 11.5    |
| PP1 zone 4                  | 18.4    | 333.5  | 334    | 7.5         | 22.5    |
| PP1 zone 5                  | 18.5    | 334    | 335.5  | 20.5        | 40      |
| PP1 zone 6                  | 18.6    | 334    | 335.5  | 11.5        | 20.5    |
| PP1 zone 7                  | 18.7    | 335.5  | 341.5  | 11.5        | 40      |
| PP1 zone 8                  | 18.8    | 341.5  | 344.3  | 11.5        | 40      |
| PP1 zone 9                  | 18.9    | 334    | 344.3  | 7.5         | 11.5    |
| Central PST                 | 19      | 0      | 80     | 22.7        | 22.8    |
| Pixel to PST to SCT         | 20      | 75     | 80     | 22.8        | 28.5    |
|                             | 01      | 00     | 222 5  | 20.7        | 22.0    |
|                             | 21      | 80     | 333.5  | 22.1        | 22.ŏ    |
| Type 2 services             | 22      | 342    | 344.3  | 40          | 280     |

Geometry description of the Pixel detector

|         |        |        |        |        |       | C     | Composi | tion of | the Pixe | l detecto | or   |      |      |       |      |       |       |       |
|---------|--------|--------|--------|--------|-------|-------|---------|---------|----------|-----------|------|------|------|-------|------|-------|-------|-------|
| Element |        |        |        |        |       |       |         |         | MATE     | ERIAL     |      |      |      |       |      |       |       |       |
| ID      | Al     | Cu     | Ni     | Со     | Sn    | Pb    | Ag      | Au      | Fe       | Cr        | In   | Ru   | Pd   | Mg    | Mo   | Ti    | Mn    | Zn    |
| 1       | 425.0  | 109.7  | 8.51   | 0.17   | 6.87  | 6.36  | 15.82   | 0.23    | 37.63    | 15.26     | 0.04 | 0.06 | 0.02 | 1.00  | 1.81 | 9.15  |       |       |
| 2       | 587.4  | 187.4  | 10.51  | 0.21   | 11.87 | 10.98 | 27.32   | 0.40    | 39.08    | 15.91     | 0.07 | 0.10 | 0.04 | 1.74  | 1.88 | 15.80 |       |       |
| 3       | 803.8  | 256.8  | 13.27  | 0.27   | 16.24 | 15.03 | 37.38   | 0.54    | 46.53    | 18.97     | 0.09 | 0.14 | 0.05 | 2.37  | 2.23 | 21.63 |       |       |
| 4       | 107.6  | 17.3   | 0.41   | 0.01   | 1.15  | 1.07  | 2.65    | 0.04    |          |           | 0.01 | 0.01 |      |       |      | 1.54  |       |       |
| 5       | 107.6  | 17.3   | 0.41   | 0.01   | 1.15  | 1.07  | 2.65    | 0.04    |          |           | 0.01 | 0.01 |      |       |      | 1.54  |       |       |
| 6       | 107.6  | 17.3   | 0.41   | 0.01   | 1.15  | 1.07  | 2.65    | 0.04    |          |           | 0.01 | 0.01 |      |       |      | 1.54  |       |       |
| 7       | 3.5    | 14.7   | 17.13  | 0.34   | 0.01  |       |         |         | 15.31    | 6.18      | 0.70 |      |      |       | 0.74 |       |       |       |
| 8       | 6.0    | 25.3   | 29.69  | 0.59   | 0.02  |       |         |         | 27.09    | 10.93     | 1.22 |      |      |       | 1.31 |       |       |       |
| 9       | 8.2    | 34.6   | 39.02  | 0.78   | 0.02  |       |         |         | 27.09    | 10.93     | 1.66 |      |      |       | 1.31 |       |       |       |
| 10      | 12.4   | 1.6    | 1.60   | 0.03   |       |       |         |         |          |           | 0.13 |      |      |       |      |       |       |       |
| 11      | 12.4   | 1.6    | 1.60   | 0.03   |       |       |         |         |          |           | 0.13 |      |      |       |      |       |       |       |
| 12      | 12.4   | 1.6    | 1.60   | 0.03   |       |       |         |         |          |           | 0.13 |      |      |       |      |       |       |       |
| 13      | 930.4  | 20.3   | 5.44   | 0.11   |       |       |         |         |          | 0.08      |      |      |      | 0.49  |      |       |       |       |
| 14      | 4150.5 | 80.0   | 21.89  | 0.44   |       |       |         |         |          | 0.26      | 0.38 |      |      | 1.51  |      | 0.08  | 0.39  | 0.15  |
| 15      | 14.5   | 0.0    | 8.60   | 0.17   |       |       |         |         | 53.32    | 21.50     |      |      |      |       | 2.58 |       |       |       |
| 16      | 619.5  | 631.8  |        |        | 31.83 | 16.66 |         | 0.02    |          | 0.85      |      |      |      | 4.12  |      | 1.07  | 5.28  | 2.03  |
| 17      | 11171. | 380.3  |        |        |       |       |         |         |          | 6.60      |      |      |      | 31.96 |      | 8.27  | 40.94 | 15.74 |
| 18.1    | 28.9   | 51.6   | 8.60   | 0.17   | 11.62 | 6.92  |         | 0.02    | 53.32    | 21.72     |      |      |      |       | 2.58 |       |       |       |
| 18.2    | 743.5  | 37.5   |        |        |       |       |         |         |          | 1.01      |      |      |      | 4.85  |      | 1.26  | 6.24  | 2.36  |
| 18.3    | 14.4   | 51.6   |        |        | 11.62 | 6.92  |         | 0.02    |          | 0.22      |      |      |      |       |      |       |       |       |
| 18.4    | 729.1  | 63.3   |        |        | 2.49  | 1.48  |         |         |          | 1.08      |      |      |      | 4.85  |      | 1.26  | 6.24  | 2.36  |
| 18.5    | 0.0    | 189.1  |        |        | 41.81 | 23.27 |         | 0.12    |          | 0.79      |      |      |      |       |      |       |       |       |
| 18.6    | 1458.2 | 74.9   |        |        |       |       |         |         |          | 2.01      |      |      |      | 9.69  |      | 2.52  | 1.24  | 4.78  |
| 18.7    | 2232.7 | 114.7  |        |        |       |       |         |         |          | 3.09      |      |      |      | 14.84 |      | 3.83  | 19.02 | 7.28  |
| 18.8    | 0.0    | 576.1  |        |        | 35.60 | 19.64 |         | 0.10    |          | 0.65      |      |      |      |       |      |       |       |       |
| 18.9    | 0.0    | 140.3  |        |        | 11.62 | 6.47  |         | 0.02    |          | 0.14      |      |      |      |       |      |       |       |       |
| 19      | 580.5  | 0.0    |        |        |       |       |         |         |          |           |      |      |      |       |      |       |       |       |
| 20      | 7.3    | 0.0    | 4.30   | 0.09   |       |       |         |         | 26.66    | 10.75     |      |      |      |       | 1.29 |       |       |       |
| 21      | 1103.0 | 0.0    |        |        |       |       |         |         |          |           |      |      |      |       |      |       |       |       |
| 22      | 61256. | 71111. | 7864.5 | 157.29 |       |       |         |         |          | 4.99      |      |      |      | 30.99 |      |       |       |       |

Geometry description of the SCT Barrel Detector

| ELEMENT                                          | Element | ELEMENT GEOMETRY (ring/disk) |        |        |         |  |  |  |  |
|--------------------------------------------------|---------|------------------------------|--------|--------|---------|--|--|--|--|
|                                                  | ID      | Z1[cm]                       | Z2[cm] | R1[cm] | R2[cm]  |  |  |  |  |
| Thermal shield 1                                 | 1       | 0                            | 75.4   | 54.83  | 54.9    |  |  |  |  |
| Thermal shield 2                                 | 2       | 75.4                         | 79     | 54     | 54.9    |  |  |  |  |
| Thermal shield 3                                 | 3       | 72.4                         | 75.4   | 54     | 54.83   |  |  |  |  |
| Thermal shield 4                                 | 4       | 23.3                         | 26.3   | 54     | 54.83   |  |  |  |  |
| Thermal shield 5                                 | 5       | 78.82                        | 79     | 25     | 54      |  |  |  |  |
| Thermal shield 6                                 | 6       | 0                            | 77     | 25     | 25.0175 |  |  |  |  |
| Barrel interlink                                 | 7       | 78.7                         | 78.82  | 26     | 50      |  |  |  |  |
| SCT barrel 3 + Support<br>cylinder               | 8       | 0                            | 78.294 | 27.8   | 28.4    |  |  |  |  |
| Close out at the end of<br>barrel                | 9       | 78.294                       | 78.32  | 27.8   | 28.4    |  |  |  |  |
| End flange                                       | 10      | 78.32                        | 78.7   | 25.8   | 28.4    |  |  |  |  |
| SCT barrel 4 +Support<br>cylinder                | 11      | 0                            | 78.294 | 34.9   | 35.5    |  |  |  |  |
| Close out at the end of barrel                   | 12      | 78.294                       | 78.32  | 34.9   | 35.5    |  |  |  |  |
| End flange                                       | 13      | 78.32                        | 78.7   | 32.5   | 35.5    |  |  |  |  |
| SCT barrel 5 +Support<br>cylinder                | 14      | 0                            | 78.294 | 42.1   | 42.7    |  |  |  |  |
| Close out at the end of barrel                   | 15      | 78.294                       | 78.32  | 42.1   | 42.7    |  |  |  |  |
| End flange                                       | 16      | 78.32                        | 78.7   | 39.5   | 42.7    |  |  |  |  |
| SCT barrel 6 +Support<br>cylinder                | 17      | 0                            | 78.294 | 49.201 | 49.801  |  |  |  |  |
| Close out at the end of<br>barrel                | 18      | 78.294                       | 78.32  | 49.2   | 49.8    |  |  |  |  |
| End flange                                       | 19      | 78.32                        | 78.7   | 46.6   | 49.8    |  |  |  |  |
| SCT pipes                                        | 20      | 30.841                       | 50     | 78     | 78.5    |  |  |  |  |
| Cables and cooling pipes<br>from barrels to PPB1 | 21      | 78                           | 79.84  | 50     | 114     |  |  |  |  |
| Cables and cooling pipes<br>from PPB1 to PPB2    | 22      | 79.84                        | 343    | 112.3  | 115     |  |  |  |  |

| Element |        |         |        |         |         |         |         | MATE    | ERIAL   |         |       |         |      |        |       |        |
|---------|--------|---------|--------|---------|---------|---------|---------|---------|---------|---------|-------|---------|------|--------|-------|--------|
| ID      | Н      | Be      | В      | С       | Ν       | 0       | F       | AI      | Si      | Ni      | Со    | Cu      | Ag   | Sn     | Au    | Pb     |
| 1       | 2.05   |         |        | 1448.15 | 5.75    | 16.47   | 336.76  | 1773.36 |         |         |       |         |      |        |       |        |
| 2       |        |         |        | 538.16  |         |         | 172.63  | 169.99  |         |         |       |         |      |        |       |        |
| 3       | 75.37  |         |        | 452.19  |         |         |         |         |         |         |       |         |      |        |       |        |
| 4       | 75.37  |         |        | 452.19  |         |         |         |         |         |         |       |         |      |        |       |        |
| 5       |        |         |        | 666.79  |         |         |         | 69.99   |         |         |       |         |      |        |       |        |
| 6       | 4.47   |         |        | 118.86  | 12.54   | 35.90   |         | 245.15  |         |         |       |         |      |        |       |        |
| 7       | 28.59  |         |        | 760.96  | 80.27   | 229.83  |         |         |         |         |       |         |      |        |       |        |
| 8       | 18.05  | 114.625 | 52.99  | 2726.9  | 157.63  | 385.15  | 665.7   | 560.45  | 2259.84 | 7.68    | 0.155 | 493.825 | 19.2 | 11.71  | 2.11  | 18.625 |
| 9       |        |         |        |         |         |         |         |         |         | 7.39    |       | 17.25   |      |        |       |        |
| 10      | 6.99   |         |        | 186.17  | 19.64   | 56.23   |         |         |         |         |       |         |      |        |       |        |
| 11      | 22.56  | 143.28  | 66.24  | 3410.84 | 197.04  | 481.44  | 832.13  | 700.55  | 2824.8  | 9.6     | 0.19  | 617.28  | 24   | 14.64  | 2.64  | 23.28  |
| 12      |        |         |        |         |         |         |         |         |         | 9.26    |       | 21.60   |      |        |       |        |
| 13      | 10.13  |         |        | 269.51  | 28.43   | 81.40   |         |         |         |         |       |         |      |        |       |        |
| 14      | 27.07  | 171.935 | 79.49  | 4097.73 | 236.45  | 577.73  | 998.555 | 840.65  | 3389.76 | 11.52   | 0.23  | 740.735 | 28.8 | 17.57  | 3.17  | 27.935 |
| 15      |        |         |        |         |         |         |         |         |         | 11.15   |       | 26.02   |      |        |       |        |
| 16      | 13.06  |         |        | 347.51  | 36.66   | 104.95  |         |         |         |         |       |         |      |        |       |        |
| 17      | 31.585 | 200.59  | 92.735 | 4781.67 | 275.855 | 674.015 | 1164.98 | 980.75  | 3954.72 | 13.44   | 0.27  | 864.19  | 33.6 | 20.495 | 3.695 | 32.59  |
| 18      |        |         |        |         |         |         |         |         |         | 13.02   |       | 30.38   |      |        |       |        |
| 19      | 15.31  |         |        | 407.54  | 42.99   | 123.09  | 509.39  | 2258.5  |         | 40.82   |       | 95.26   |      |        |       |        |
| 20      |        |         |        |         |         |         |         |         |         | 25.7    | 0.51  | 59.9    |      |        |       |        |
| 21      |        |         |        |         |         |         |         | 2800.0  |         | 600     | 12    | 1200    |      |        |       |        |
| 22      |        |         |        |         |         |         |         |         |         | 10011.8 | 200.2 | 264856. |      |        |       |        |

|                   |            |         |          |            | <u>,</u> |
|-------------------|------------|---------|----------|------------|----------|
| ELEMENT           | Element    | ELEMI   | ENT GEOM | ETRY (ring | g/disk)  |
|                   | UD         |         | Z2[cm]   | Rí[cm]     | R2[cm]   |
| I hermal_shield_1 | 1          | 81.10   | 81.20    | 25.10      | 61.00    |
| Thermal_shield_2  | 2          | 82.00   | 82.02    | 50.00      | 59.00    |
| Thermal_shield_3  | 3          | 82.05   | 84.00    | 58.20      | 59.90    |
| Thermal_shield_4  | 4          | 82.00   | 82.50    | 59.90      | 61.00    |
| Thermal_shield_5  | 5          | 82.50   | 273.30   | 59.90      | 61.00    |
| Thermal_shield_6  | 6          | 82.50   | 273.30   | 61.00      | 61.09    |
| Thermal_shield_7  | 7          | 274.90  | 274.92   | 25.80      | 57.20    |
| Thermal_shield_8  | 8          | 274.92  | 275.72   | 25.80      | 57.20    |
| Thermal_shield_9  | 9          | 278.60  | 278.70   | 25.80      | 61.50    |
| Thermal_shield_10 | 10         | 275.80  | 278.50   | 25.80      | 29.15    |
| Thermal_shield_11 | 11         | 81.30   | 278.70   | 25.55      | 25.80    |
| Thermal_shield_12 | 12         | 81.30   | 81.85    | 25.80      | 30.50    |
| SCT_disk_1        | 13         | 82.85   | 86.85    | 26.70      | 56.70    |
| SCT disk 2        | 14         | 91.20   | 95.20    | 26.70      | 56.70    |
| SCT disk 3        | 15         | 106.20  | 110.20   | 26.70      | 56.70    |
| SCT disk 4        | 16         | 124.00  | 128.00   | 26.70      | 56.70    |
| SCT disk 5        | 17         | 135.50  | 139.50   | 26.70      | 56.70    |
| SCT disk 6        | 18         | 172.50  | 176.50   | 26.70      | 56.70    |
| SCT disk 7        | 19         | 205.00  | 209.00   | 26.70      | 56.70    |
| SCT disk 8        | 20         | 244 00  | 248.00   | 37 40      | 56 70    |
| SCT disk 9        | 21         | 270.50  | 274 50   | 37 40      | 56 70    |
| Cooling pipe 1    | 22         | 84.85   | 275.70   | 58.39      | 58.39    |
| Cooling pipe 2    | 23         | 93 20   | 275 70   | 58.39      | 58 40    |
| Cooling pipe 3    | 24         | 108 20  | 275 70   | 58 40      | 58 41    |
| Cooling pipe 4    | 25         | 126.00  | 275.70   | 58.41      | 58.42    |
| Cooling pipe 5    | 26         | 137 50  | 275 70   | 58 42      | 58 42    |
| Cooling pipe 6    | 27         | 174 50  | 275 70   | 58 42      | 58 43    |
| Cooling pipe 7    | 28         | 207.00  | 275.70   | 58.43      | 58.44    |
| Cooling pipe 8    | 29         | 246.00  | 275 70   | 58 44      | 58 44    |
| Cooling pipe 9    | 30         | 272 50  | 275 70   | 58 44      | 58 44    |
| Power tape 1      | 31         | 84 85   | 275 70   | 59.85      | 59.85    |
| Power tape 2      | 32         | 93.20   | 275.70   | 59.85      | 59.86    |
| Power tape 3      | 33         | 108.20  | 275 70   | 59.86      | 59.87    |
| Power tape 4      | 34         | 126.00  | 275.70   | 59.87      | 59.88    |
| Power tape 5      | 35         | 137 50  | 275 70   | 59.88      | 59.88    |
| Power tape 6      | 36         | 174 50  | 275 70   | 59.88      | 59.89    |
| Power tape 7      | 37         | 207.00  | 275.70   | 59.89      | 59.89    |
| Power tape 8      | 38         | 246.00  | 275.70   | 59.89      | 59.00    |
| Power tape 9      | 30         | 272 50  | 275.70   | 59.00      | 59.00    |
| Patch nanel 1     | 40         | 83.25   | 84.45    | 55 70      | 56 70    |
| Patch_panel_2     | -+0<br>//1 | 03.23   | 02.80    | 55 70      | 56 70    |
| Patch_panel_2     | 42         | 106.60  | 107.80   | 55.70      | 56.70    |
| Patch_panel_3     | 42         | 100.00  | 107.00   | 55.70      | 50.70    |
| Patch papel 5     | 43         | 124.40  | 120.00   | 55.70      | 56.70    |
| Patch paral 6     | 44         | 172.00  | 17/ 10   | 55.70      | 50.70    |
| Patch_panel_7     | 40         | 205.00  | 174.10   | 55.70      | 50.7U    |
| Patch_panel_?     | 40         | 200.80  | 200.00   | 55.70      | 50.70    |
| Patch_panel_0     | 4/         | 244.0U  | 240.00   | 00.7U      | 56.70    |
|                   | 4ð         | 2/ 1.00 | 212.10   |            | U1.0C    |
|                   | 49         | 2/3.00  | 350.00   | 114.00     | 115.00   |
| Tipe II cables    | 50         | 272.50  | 273.00   | 55.90      | 114.00   |

Geometry description of the SCT Forward Detector

| 0.0TE 1D (           | • , •       |
|----------------------|-------------|
| SCI Forward Detector | composition |
|                      | composition |

| Element |       |       |       |         |        |        | Ν      | IATERIAL | •    |      |        |    |       |      |       |
|---------|-------|-------|-------|---------|--------|--------|--------|----------|------|------|--------|----|-------|------|-------|
| ID      | Н     | Be    | В     | С       | Ν      | 0      | Al     | Si       | Ni   | Co   | Cu     | Ag | Sn    | Au   | Pb    |
| 1       |       |       |       |         |        |        | 924.39 |          |      |      |        |    |       |      |       |
| 2       |       |       |       |         |        |        | 166.76 |          |      |      |        |    |       |      |       |
| 3       |       |       |       | 1232.45 |        |        |        |          |      |      |        |    |       |      |       |
| 4       |       |       |       | 209.33  |        |        |        |          |      |      |        |    |       |      |       |
| 5       |       |       |       | 79878.9 |        |        |        |          |      |      |        |    |       |      |       |
| 6       |       |       |       |         |        |        | 1689.  |          |      |      |        |    |       |      |       |
| 7       |       |       |       |         |        |        | 509.5  |          |      |      |        |    |       |      |       |
| 8       |       |       |       | 6563.45 |        |        |        |          |      |      |        |    |       |      |       |
| 9       |       |       |       |         |        |        | 2649.9 |          |      |      |        |    |       |      |       |
| 10      |       |       |       | 2174.83 |        |        |        |          |      |      |        |    |       |      |       |
| 11      |       |       |       | 11088.6 |        |        |        |          |      |      |        |    |       |      |       |
| 12      |       |       |       | 636.82  |        |        |        |          |      |      |        |    |       |      |       |
| 13      | 12.49 | 226.9 | 36.77 | 1448.49 | 61.80  | 87.17  | 77.00  | 583.23   | 4.90 | 0.10 | 294.10 | 20 | 9.60  | 2.16 | 14.30 |
| 14      | 17.76 | 401.3 | 65.04 | 1905.72 | 109.34 | 154.21 | 136.24 | 1031.88  | 8.67 | 0.17 | 520.33 | 35 | 16.99 | 3.81 | 25.31 |
| 15      | 17.76 | 401.3 | 65.04 | 1905.72 | 109.34 | 154.21 | 136.24 | 1031.88  | 8.67 | 0.17 | 520.33 | 35 | 16.99 | 3.81 | 25.31 |
| 16      | 17.76 | 401.3 | 65.04 | 1905.72 | 109.34 | 154.21 | 136.24 | 1031.88  | 8.67 | 0.17 | 520.33 | 35 | 16.99 | 3.81 | 25.31 |
| 17      | 17.76 | 401.3 | 65.04 | 1905.72 | 109.34 | 154.21 | 136.24 | 1031.88  | 8.67 | 0.17 | 520.33 | 35 | 16.99 | 3.81 | 25.31 |
| 18      | 17.76 | 401.3 | 65.04 | 1905.72 | 109.34 | 154.21 | 136.24 | 1031.88  | 8.67 | 0.17 | 520.33 | 35 | 16.99 | 3.81 | 25.31 |
| 19      | 12.49 | 226.9 | 36.77 | 1448.49 | 61.80  | 87.17  | 77.00  | 583.23   | 4.90 | 0.10 | 294.10 | 20 | 9.60  | 2.16 | 14.30 |
| 20      | 12.62 | 401.4 | 65.05 | 1593.24 | 109.34 | 154.22 | 136.24 | 1031.88  | 8.67 | 0.17 | 520.33 | 35 | 16.99 | 3.81 | 25.31 |
| 21      | 7.14  | 226.9 | 36.77 | 1135.98 | 61.80  | 87.17  | 77.00  | 583.23   | 4.90 | 0.10 | 294.10 | 20 | 9.60  | 2.16 | 14.30 |
| 22      |       |       |       |         |        |        | 285.90 |          |      |      |        |    |       |      |       |
| 23      |       |       |       |         |        |        | 410.07 |          |      |      |        |    |       |      |       |
| 24      |       |       |       |         |        |        | 376.42 |          |      |      |        |    |       |      |       |
| 25      |       |       |       |         |        |        | 336.46 |          |      |      |        |    |       |      |       |

# Table 12 (continuation)

| Element |   |    |   |   |   |   | MATERIA | L BRE | KDOWN  |      |        |    |    |    |    |
|---------|---|----|---|---|---|---|---------|-------|--------|------|--------|----|----|----|----|
| ID      | Н | Be | В | С | Ν | 0 | Al      | Si    | Ni     | Со   | Cu     | Ag | Sn | Au | Pb |
| 26      |   |    |   |   |   |   | 310.65  |       |        |      |        |    |    |    |    |
| 27      |   |    |   |   |   |   | 227.51  |       |        |      |        |    |    |    |    |
| 28      |   |    |   |   |   |   | 102.99  |       |        |      |        |    |    |    |    |
| 29      |   |    |   |   |   |   | 44.53   |       |        |      |        |    |    |    |    |
| 30      |   |    |   |   |   |   | 2.40    |       |        |      |        |    |    |    |    |
| 31      |   |    |   |   |   |   | 959.25  |       |        |      |        |    |    |    |    |
| 32      |   |    |   |   |   |   | 1299.91 |       |        |      |        |    |    |    |    |
| 33      |   |    |   |   |   |   | 1193.21 |       |        |      |        |    |    |    |    |
| 34      |   |    |   |   |   |   | 1066.54 |       |        |      |        |    |    |    |    |
| 35      |   |    |   |   |   |   | 984.72  |       |        |      |        |    |    |    |    |
| 36      |   |    |   |   |   |   | 721.17  |       |        |      |        |    |    |    |    |
| 37      |   |    |   |   |   |   | 345.53  |       |        |      |        |    |    |    |    |
| 38      |   |    |   |   |   |   | 149.39  |       |        |      |        |    |    |    |    |
| 39      |   |    |   |   |   |   | 9.09    |       |        |      |        |    |    |    |    |
| 40      |   |    |   |   |   |   | 1146.43 |       |        |      |        |    |    |    |    |
| 41      |   |    |   |   |   |   | 764.28  |       |        |      |        |    |    |    |    |
| 42      |   |    |   |   |   |   | 1146.43 |       |        |      |        |    |    |    |    |
| 43      |   |    |   |   |   |   | 1146.43 |       |        |      |        |    |    |    |    |
| 44      |   |    |   |   |   |   | 1146.43 |       |        |      |        |    |    |    |    |
| 45      |   |    |   |   |   |   | 1146.43 |       |        |      |        |    |    |    |    |
| 46      |   |    |   |   |   |   | 764.28  |       |        |      |        |    |    |    |    |
| 47      |   |    |   |   |   |   | 764.28  |       | 2787.2 | 55.7 | 73240. |    |    |    |    |
| 48      |   |    |   |   |   |   | 477.68  |       | 2103.1 | 42.1 | 55263. |    |    |    |    |

| ELEMENT                  | Element | ELEM   | ENT GEON | IETRY (ring | g/disk) |
|--------------------------|---------|--------|----------|-------------|---------|
|                          | ID      | Z1[cm] | Z2[cm]   | R1[cm]      | R2[cm]  |
| Barrel TRT               | 1       | 0      | 71.2     | 55.8        | 107.3   |
| TRT A                    | 2       | 82.6   | 170.7    | 62          | 107.6   |
| TRT B                    | 3       | 172    | 271.6    | 62          | 107.6   |
| TRT C                    | 4       | 281.6  | 340.6    | 46          | 103.4   |
| Barrel Module 1 services | 5       | 77.2   | 78.5     | 60          | 115     |
| Barrel Module 2 services | 6       | 78.5   | 80       | 75          | 115     |
| Barrel Module 3 services | 7       | 80     | 81       | 90          | 115     |
| Wheels A services        | 8       | 124    | 340      | 113         | 114     |
| Wheels B services        | 9       | 225    | 340      | 112         | 113     |
| Wheels C services        | 10      | 338    | 340      | 105         | 112     |
| Barrel electronics       | 11      | 71.2   | 77.2     | 56          | 107     |
| EC electronics           | 12      | 82.6   | 338      | 107.6       | 108.6   |
| Squirrel cage            | 13      | 82.6   | 338      | 108.6       | 109.2   |
| Module 1,2,3 services    | 14      | 81     | 340      | 114         | 115     |
| TRT services             | 15      | 340    | 345      | 109.2       | 317     |

Geometry description of the TRT detector

|         |         |         |         |         |        |         | TRT     | compos  | sition  |        |        |       |        |        |       |        |
|---------|---------|---------|---------|---------|--------|---------|---------|---------|---------|--------|--------|-------|--------|--------|-------|--------|
| Element |         |         |         |         |        |         | MAT     | ERIAL E | BREAKDO | OWN    |        |       |        |        | -     |        |
| ID      | Cu      | Al      | Si      | Fe      | Mn     | Cr      | Ni      | Со      | Zn      | Sn     | Pb     | Au    | Ag     | Ва     | Ti    | W      |
| 1       |         |         |         |         |        |         |         |         |         |        |        | 23.75 |        |        |       | 339.32 |
| 2       |         |         |         |         |        |         |         |         |         |        |        | 27.06 |        |        |       | 386.58 |
| 3       |         |         |         |         |        |         |         |         |         |        |        | 30.59 |        |        |       | 437.04 |
| 4       |         |         |         |         |        |         |         |         |         |        |        | 20.09 |        |        |       | 287.07 |
| 5       | 1532.23 | 325.90  |         | 1442.70 | 41.22  | 370.98  | 206.10  | 4.1     |         |        |        |       |        |        |       |        |
| 6       | 2188.65 | 327.43  |         | 1422.99 | 40.66  | 365.91  | 203.28  | 4.0     |         |        |        |       |        |        |       |        |
| 7       | 1765.40 | 241.74  |         | 1186.39 | 33.90  | 305.07  | 169.48  | 3.38    |         |        |        |       |        |        |       |        |
| 8       | 41784.8 | 6381.80 |         | 5432.90 | 155.23 | 1397.03 | 776.13  | 15.5    |         |        |        |       |        |        |       |        |
| 9       | 15720.1 | 2559.69 |         | 3599.70 | 102.85 | 925.64  | 514.24  | 10.2    |         |        |        |       |        |        |       |        |
| 10      | 2108.27 | 487.11  |         | 585.99  | 16.74  | 150.68  | 83.71   | 1.6     |         |        |        |       |        |        |       |        |
| 11      | 5497.73 | 6686.5  | 1458.10 | 1285.48 | 36.73  | 330.55  | 183.64  | 3.7     | 938.95  | 13.05  | 13.05  | 10.92 | 262.72 | 270.07 | 94.31 |        |
| 12      | 15000.  |         |         |         |        | 77.50   |         | 0       | 35.00   | 2215.0 | 1476.5 | 12.50 |        |        |       |        |
| 13      | 270.00  | 268000. |         | 1075.00 |        | 670.0   |         | 0       | 670.00  |        |        |       |        |        |       |        |
| 14      | 36037.0 | 5213.91 |         | 11746.1 | 335.60 | 3020.41 | 1678.01 | 33.6    |         |        |        |       |        |        |       |        |
| 15      | 113634. | 19902.8 |         | 24893.3 | 711.24 | 6401.15 | 3556.19 | 71.     |         |        |        |       |        |        |       |        |

. .

|          |              |          |          |          | Ga       | mma-equiv | alents in Tl | RT volume | by material |          |          |          |          |          |          |
|----------|--------------|----------|----------|----------|----------|-----------|--------------|-----------|-------------|----------|----------|----------|----------|----------|----------|
|          |              |          |          |          | T=100 d  |           |              |           |             |          |          | T=10 y   |          |          |          |
|          | Material     | t= 1 d   | t= 3 d   | t= 5 d   | t= 7 d   | t= 15 d   | t= 30 d      | t= 100 d  | t= 1 d      | t= 3 d   | t= 5 d   | t= 7 d   | t= 15 d  | t= 30 d  | t= 100 d |
|          | Al           | 50.4     | 31.2     | 29.2     | 31.2     | 39.0      | 48.3         | 66.5      | 63.3        | 59.9     | 62.1     | 64.6     | 71.0     | 77.0     | 85.8     |
|          | Si           | 0.2      | 0.2      | 0.2      | 0.2      | 0.3       | 0.3          | 0.5       | 0.3         | 0.4      | 0.4      | 0.5      | 0.5      | 0.5      | 0.6      |
| s        | Ti           | 0.1      | 0.2      | 0.2      | 0.2      | 0.2       | 0.2          | 0.1       | 0.1         | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.0      |
| ron      | Mn           | 1.1      | 1.9      | 2.0      | 2.0      | 1.8       | 1.5          | 1.2       | 0.9         | 1.2      | 1.3      | 1.2      | 1.0      | 0.9      | 0.7      |
| lad      | Fe           | 5.0      | 8.0      | 8.3      | 7.7      | 5.6       | 3.7          | 2.2       | 3.7         | 4.5      | 4.2      | 3.8      | 2.6      | 1.7      | 1.0      |
| <u>т</u> | Ni           | 0.9      | 1.5      | 1.7      | 1.7      | 1.8       | 1.9          | 1.5       | 0.7         | 0.9      | 0.9      | 0.9      | 0.8      | 0.8      | 0.5      |
|          | Cu           | 14.3     | 23.9     | 27.0     | 27.9     | 29.0      | 28.6         | 20.8      | 11.4        | 14.9     | 15.3     | 15.2     | 14.2     | 12.7     | 8.4      |
|          | W            | 27.9     | 33.0     | 31.4     | 28.9     | 22.4      | 15.4         | 7.2       | 19.6        | 18.1     | 15.7     | 13.8     | 9.7      | 6.3      | 2.9      |
|          | Subtotal     | 8.95E-10 | 4.51E-10 | 3.65E-10 | 3.29E-10 | 2.60E-10  | 2.07E-10     | 1.42E-10  | 1.31E-09    | 8.66E-10 | 7.79E-10 | 7.43E-10 | 6.70E-10 | 6.11E-10 | 5.20E-10 |
|          | Al           | 5.0      | 1.5      | 0.3      | 0.0      | 0.0       | 0.0          | 0.0       | 4.7         | 1.3      | 0.2      | 0.0      | 0.0      | 0.0      | 0.0      |
|          | Cr           | 0.2      | 0.5      | 0.9      | 1.2      | 1.8       | 1.5          | 0.3       | 0.2         | 0.5      | 0.7      | 0.9      | 1.0      | 0.8      | 0.2      |
|          | Fe           | 0.1      | 0.3      | 0.5      | 0.7      | 1.2       | 1.2          | 0.6       | 0.1         | 0.3      | 0.5      | 0.6      | 0.8      | 0.8      | 0.5      |
|          | Со           | 0.2      | 0.5      | 0.8      | 1.2      | 2.2       | 2.6          | 3.1       | 1.1         | 2.8      | 4.4      | 5.7      | 8.4      | 9.3      | 11.0     |
| S        | Ni           | 0.1      | 0.2      | 0.3      | 0.5      | 0.8       | 0.8          | 0.5       | 0.1         | 0.2      | 0.3      | 0.4      | 0.5      | 0.5      | 0.3      |
| Lo<br>Lo | Cu           | 27.6     | 5.6      | 0.7      | 0.1      | 0.0       | 0.0          | 0.0       | 25.9        | 4.7      | 0.5      | 0.1      | 0.0      | 0.0      | 0.0      |
| eut      | Zn           | 1.0      | 2.6      | 4.5      | 6.4      | 11.6      | 13.2         | 13.5      | 1.7         | 4.0      | 6.2      | 8.0      | 11.5     | 12.3     | 12.3     |
| z        | Ag           | 5.6      | 15.5     | 26.7     | 37.8     | 68.6      | 78.4         | 80.4      | 9.7         | 24.0     | 37.2     | 47.9     | 69.4     | 74.3     | 74.2     |
|          | Sn           | 0.3      | 0.8      | 1.3      | 1.7      | 2.4       | 2.0          | 1.4       | 0.4         | 0.9      | 1.3      | 1.6      | 2.0      | 1.8      | 1.5      |
|          | W            | 27.3     | 18.8     | 8.1      | 2.9      | 0.0       | 0.0          | 0.0       | 25.6        | 15.9     | 6.2      | 2.0      | 0.0      | 0.0      | 0.0      |
|          | Au           | 32.5     | 53.8     | 55.8     | 47.6     | 11.3      | 0.3          | 0.0       | 30.5        | 45.4     | 42.4     | 32.8     | 6.2      | 0.1      | 0.0      |
|          | Subtotal     | 1.93E-09 | 7.00E-10 | 4.03E-10 | 2.83E-10 | 1.53E-10  | 1.28E-10     | 1.03E-10  | 2.06E-09    | 8.28E-10 | 5.31E-10 | 4.11E-10 | 2.77E-10 | 2.48E-10 | 2.05E-10 |
| Tota     | I, Sv.m².s⁻¹ | 2.83E-09 | 1.15E-09 | 7.69E-10 | 6.13E-10 | 4.13E-10  | 3.36E-10     | 2.45E-10  | 3.37E-09    | 1.69E-09 | 1.31E-09 | 1.15E-09 | 9.47E-10 | 8.59E-10 | 7.25E-10 |

| -    |                                        | 0        |          |          | · ·      |          |          |          |          | ,        |          |          |          |          |          |
|------|----------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|      |                                        |          |          |          | T=100 d  |          |          |          |          |          |          | T=10 y   |          |          |          |
|      | Material                               | t= 1 d   | t= 3 d   | t= 5 d   | t= 7 d   | t= 15 d  | t= 30 d  | t= 100 d | t= 1 d   | t= 3 d   | t= 5 d   | t= 7 d   | t= 15 d  | t= 30 d  | t= 100 d |
|      | Al                                     | 2.6      | 1.0      | 0.9      | 0.9      | 1.3      | 1.7      | 3.1      | 4.2      | 3.2      | 3.3      | 3.6      | 4.5      | 5.7      | 9.2      |
| SU   | Mn                                     | 5.5      | 5.8      | 5.8      | 5.7      | 5.4      | 5.0      | 5.9      | 6.0      | 6.4      | 6.5      | 6.5      | 6.4      | 6.4      | 7.7      |
| dro  | Fe                                     | 35.9     | 35.5     | 33.5     | 31.4     | 24.4     | 18.3     | 15.9     | 33.3     | 32.4     | 30.5     | 28.5     | 22.5     | 17.6     | 15.8     |
| На   | Ni                                     | 10.4     | 10.7     | 10.9     | 11.3     | 12.7     | 14.3     | 15.1     | 10.1     | 10.3     | 10.4     | 10.6     | 11.6     | 12.4     | 11.5     |
|      | Cu                                     | 45.6     | 47.0     | 48.9     | 50.7     | 56.2     | 60.8     | 60.1     | 46.4     | 47.7     | 49.3     | 50.8     | 55.0     | 57.9     | 55.8     |
|      | Subtotal                               | 1.37E-09 | 1.11E-09 | 9.78E-10 | 8.83E-10 | 6.60E-10 | 4.86E-10 | 2.47E-10 | 1.57E-09 | 1.31E-09 | 1.18E-09 | 1.08E-09 | 8.54E-10 | 6.69E-10 | 3.93E-10 |
|      | Al                                     | 0.2      | 0.2      | 0.1      | 0.0      | 0.0      | 0.0      | 0.0      | 0.2      | 0.1      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|      | Cr                                     | 0.8      | 7.0      | 15.5     | 16.6     | 14.7     | 11.3     | 2.9      | 0.8      | 3.7      | 4.9      | 4.9      | 4.1      | 2.9      | 0.6      |
| s    | Mn                                     | 0.2      | 0.0      | 0.1      | 0.1      | 0.1      | 0.1      | 0.2      | 0.2      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      |
| ror  | Fe                                     | 0.8      | 6.7      | 15.1     | 16.6     | 16.2     | 15.1     | 10.1     | 0.9      | 4.3      | 5.9      | 6.0      | 5.6      | 4.9      | 2.9      |
| eut  | Со                                     | 1.8      | 15.3     | 35.5     | 39.9     | 43.0     | 48.2     | 68.3     | 11.2     | 55.2     | 77.6     | 80.4     | 82.2     | 84.9     | 92.3     |
| Z    | Ni                                     | 1.2      | 10.4     | 23.6     | 26.0     | 26.0     | 25.3     | 18.6     | 1.3      | 6.0      | 8.3      | 8.5      | 8.0      | 7.2      | 4.1      |
|      | Cu                                     | 95.0     | 60.3     | 10.2     | 0.8      | 0.0      | 0.0      | 0.0      | 85.4     | 30.6     | 3.1      | 0.2      | 0.0      | 0.0      | 0.0      |
|      | Subtotal                               | 3.35E-09 | 3.85E-10 | 1.66E-10 | 1.48E-10 | 1.37E-10 | 1.21E-10 | 8.33E-11 | 3.72E-09 | 7.57E-10 | 5.38E-10 | 5.19E-10 | 5.06E-10 | 4.88E-10 | 4.37E-10 |
| Tota | al, Sv.m <sup>2</sup> .s <sup>-1</sup> | 4.72E-09 | 1.49E-09 | 1.14E-09 | 1.03E-09 | 7.96E-10 | 6.07E-10 | 3.30E-10 | 5.29E-09 | 2.07E-09 | 1.72E-09 | 1.60E-09 | 1.36E-09 | 1.16E-09 | 8.30E-10 |

Gamma-equivalents in TRT services by material (Type 1, 2, and 3)

|      |                                       |          |          |          | 0        | annna oqui |          |          |          |          |          |          |          |          |          |
|------|---------------------------------------|----------|----------|----------|----------|------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|      |                                       |          |          |          | T=100 d  |            |          |          |          |          |          | T=10 y   |          |          |          |
|      | Material                              | t= 1 d   | t= 3 d   | t= 5 d   | t= 7 d   | t= 15 d    | t= 30 d  | t= 100 d | t= 1 d   | t= 3 d   | t= 5 d   | t= 7 d   | t= 15 d  | t= 30 d  | t= 100 d |
|      | Be                                    | 0.1      | 0.1      | 0.2      | 0.2      | 0.2        | 0.2      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.0      |
|      | С                                     | 2.7      | 4.5      | 5.1      | 5.4      | 5.8        | 5.8      | 3.6      | 2.0      | 2.6      | 2.8      | 2.8      | 2.8      | 2.5      | 1.2      |
| suc  | Al                                    | 22.6     | 10.9     | 9.2      | 9.5      | 11.2       | 13.4     | 19.6     | 25.7     | 20.7     | 20.6     | 21.2     | 23.0     | 24.8     | 28.9     |
| dro  | Si                                    | 20.8     | 15.7     | 15.8     | 16.8     | 19.8       | 23.6     | 34.4     | 32.7     | 34.4     | 36.1     | 37.3     | 40.4     | 43.7     | 50.8     |
| На   | Ni                                    | 4.2      | 6.2      | 6.6      | 6.7      | 6.8        | 6.8      | 5.6      | 3.1      | 3.8      | 3.8      | 3.7      | 3.5      | 3.2      | 2.1      |
|      | Cu                                    | 29.1     | 42.2     | 44.9     | 45.1     | 43.8       | 41.4     | 31.7     | 22.4     | 26.9     | 27.0     | 26.4     | 24.1     | 21.5     | 14.7     |
|      | Pb                                    | 20.3     | 20.0     | 17.7     | 15.8     | 11.9       | 8.4      | 4.7      | 13.9     | 11.3     | 9.5      | 8.3      | 5.9      | 4.0      | 2.1      |
|      | Subtotal                              | 2.96E-10 | 1.74E-10 | 1.49E-10 | 1.38E-10 | 1.16E-10   | 9.56E-11 | 6.16E-11 | 4.47E-10 | 3.25E-10 | 3.00E-10 | 2.88E-10 | 2.64E-10 | 2.42E-10 | 1.97E-10 |
|      | Al                                    | 2.1      | 0.6      | 0.1      | 0.0      | 0.0        | 0.0      | 0.0      | 1.8      | 0.4      | 0.1      | 0.0      | 0.0      | 0.0      | 0.0      |
|      | Со                                    | 0.4      | 1.0      | 1.3      | 1.5      | 1.9        | 2.0      | 2.4      | 2.3      | 4.7      | 5.6      | 6.1      | 7.0      | 7.4      | 8.6      |
| s    | Ni                                    | 0.4      | 1.0      | 1.3      | 1.5      | 1.7        | 1.6      | 1.0      | 0.4      | 0.8      | 0.9      | 1.0      | 1.0      | 0.9      | 0.6      |
| ror  | Cu                                    | 51.8     | 9.5      | 0.9      | 0.1      | 0.0        | 0.0      | 0.0      | 43.5     | 6.4      | 0.6      | 0.0      | 0.0      | 0.0      | 0.0      |
| eut  | Ag                                    | 19.9     | 49.7     | 65.8     | 75.7     | 92.9       | 96.2     | 96.5     | 30.7     | 61.8     | 74.1     | 80.5     | 90.0     | 91.5     | 90.7     |
| Z    | Sn                                    | 0.1      | 0.2      | 0.2      | 0.2      | 0.2        | 0.2      | 0.1      | 0.1      | 0.1      | 0.2      | 0.2      | 0.2      | 0.1      | 0.1      |
|      | Au                                    | 25.4     | 38.1     | 30.4     | 21.0     | 3.4        | 0.1      | 0.0      | 21.3     | 25.8     | 18.6     | 12.2     | 1.8      | 0.0      | 0.0      |
|      | Subtotal                              | 2.37E-10 | 9.42E-11 | 7.07E-11 | 6.12E-11 | 4.88E-11   | 4.52E-11 | 3.71E-11 | 2.82E-10 | 1.39E-10 | 1.15E-10 | 1.06E-10 | 9.24E-11 | 8.72E-11 | 7.25E-11 |
| Tota | l, Sv.m <sup>2</sup> .s <sup>-1</sup> | 5.33E-10 | 2.68E-10 | 2.20E-10 | 1.99E-10 | 1.64E-10   | 1.41E-10 | 9.86E-11 | 7.29E-10 | 4.64E-10 | 4.15E-10 | 3.94E-10 | 3.57E-10 | 3.29E-10 | 2.69E-10 |

Gamma-equivalents in SCT Barrel by material

|      |                                       |          |          |          | T=100 d  |          |          |          |          |          |          | T=10 y   |          |          |          |
|------|---------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|      | Material                              | t= 1 d   | t= 3 d   | t= 5 d   | t= 7 d   | t= 15 d  | t= 30 d  | t= 100 d | t= 1 d   | t= 3 d   | t= 5 d   | t= 7 d   | t= 15 d  | t= 30 d  | t= 100 d |
|      | Be                                    | 0.1      | 0.2      | 0.2      | 0.2      | 0.2      | 0.2      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.0      |
|      | С                                     | 6.4      | 12.7     | 14.8     | 15.5     | 16.1     | 15.7     | 9.4      | 4.7      | 6.9      | 7.3      | 7.3      | 7.1      | 6.2      | 3.0      |
| suc  | Al                                    | 54.1     | 30.9     | 26.6     | 27.2     | 31.1     | 36.0     | 50.7     | 61.1     | 53.2     | 53.2     | 54.3     | 57.6     | 61.2     | 69.4     |
| drc  | Si                                    | 6.6      | 5.7      | 5.8      | 6.0      | 6.9      | 8.0      | 11.2     | 10.0     | 11.2     | 11.7     | 12.0     | 12.8     | 13.5     | 15.3     |
| На   | Ni                                    | 1.8      | 3.2      | 3.5      | 3.6      | 3.6      | 3.5      | 2.8      | 1.3      | 1.8      | 1.8      | 1.8      | 1.7      | 1.5      | 1.0      |
|      | Cu                                    | 20.4     | 35.0     | 37.9     | 37.5     | 34.7     | 31.4     | 22.7     | 15.6     | 20.4     | 20.4     | 19.7     | 17.4     | 15.0     | 9.9      |
|      | Pb                                    | 10.4     | 12.3     | 11.1     | 9.9      | 7.2      | 5.1      | 2.9      | 7.2      | 6.5      | 5.4      | 4.7      | 3.3      | 2.3      | 1.3      |
|      | Subtotal                              | 5.67E-10 | 2.79E-10 | 2.34E-10 | 2.18E-10 | 1.88E-10 | 1.60E-10 | 1.06E-10 | 8.55E-10 | 5.67E-10 | 5.20E-10 | 5.04E-10 | 4.72E-10 | 4.38E-10 | 3.66E-10 |
|      | Со                                    | 0.3      | 0.6      | 0.7      | 0.8      | 1.0      | 1.1      | 1.3      | 1.6      | 2.7      | 3.2      | 3.5      | 4.0      | 4.2      | 4.9      |
|      | Ni                                    | 0.2      | 0.3      | 0.4      | 0.4      | 0.5      | 0.5      | 0.3      | 0.1      | 0.2      | 0.3      | 0.3      | 0.3      | 0.3      | 0.2      |
| s    | Cu                                    | 33.5     | 4.9      | 0.5      | 0.0      | 0.0      | 0.0      | 0.0      | 27.0     | 3.3      | 0.3      | 0.0      | 0.0      | 0.0      | 0.0      |
| ror  | Ag                                    | 26.4     | 52.5     | 67.1     | 77.1     | 94.8     | 98.2     | 98.3     | 39.1     | 65.4     | 76.7     | 83.4     | 93.7     | 95.4     | 94.8     |
| eut  | Sn                                    | 0.1      | 0.1      | 0.2      | 0.2      | 0.2      | 0.1      | 0.1      | 0.1      | 0.1      | 0.1      | 0.2      | 0.1      | 0.1      | 0.1      |
| Z    | Au                                    | 33.7     | 40.3     | 31.0     | 21.4     | 3.5      | 0.1      | 0.0      | 27.2     | 27.3     | 19.3     | 12.6     | 1.9      | 0.0      | 0.0      |
|      | Al                                    | 5.9      | 1.3      | 0.2      | 0.0      | 0.0      | 0.0      | 0.0      | 4.8      | 0.9      | 0.1      | 0.0      | 0.0      | 0.0      | 0.0      |
|      | Subtotal                              | 4.85E-10 | 2.42E-10 | 1.89E-10 | 1.63E-10 | 1.30E-10 | 1.20E-10 | 9.90E-11 | 6.01E-10 | 3.57E-10 | 3.03E-10 | 2.77E-10 | 2.41E-10 | 2.27E-10 | 1.88E-10 |
| Tota | l, Sv.m <sup>2</sup> .s <sup>-1</sup> | 1.05E-09 | 5.22E-10 | 4.22E-10 | 3.81E-10 | 3.18E-10 | 2.80E-10 | 2.05E-10 | 1.46E-09 | 9.24E-10 | 8.23E-10 | 7.81E-10 | 7.13E-10 | 6.66E-10 | 5.55E-10 |

Gamma-equivalents in SCT Forward by material

| -    |                                        |          |          |          |          |          |          |          |          | / 1      | /        |          |          |          |          |
|------|----------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|      |                                        |          |          |          | T=100 d  |          |          |          |          |          |          | T=10 y   |          |          |          |
| s    | Material                               | t= 1 d   | t= 3 d   | t= 5 d   | t= 7 d   | t= 15 d  | t= 30 d  | t= 100 d | t= 1 d   | t= 3 d   | t= 5 d   | t= 7 d   | t= 15 d  | t= 30 d  | t= 100 d |
| Lon  | Al                                     | 0.9      | 0.3      | 0.3      | 0.3      | 0.3      | 0.4      | 0.7      | 1.4      | 1.0      | 1.0      | 1.0      | 1.2      | 1.4      | 2.3      |
| ladi | Ni                                     | 20.5     | 20.7     | 20.4     | 20.4     | 20.9     | 21.6     | 22.6     | 19.7     | 19.7     | 19.4     | 19.4     | 19.5     | 19.8     | 19.0     |
| 1    | Cu                                     | 78.6     | 79.0     | 79.3     | 79.3     | 78.8     | 78.0     | 76.6     | 78.9     | 79.3     | 79.6     | 79.6     | 79.3     | 78.8     | 78.6     |
|      | Subtotal                               | 1.54E-09 | 1.28E-09 | 1.17E-09 | 1.10E-09 | 9.09E-10 | 7.27E-10 | 3.70E-10 | 1.79E-09 | 1.53E-09 | 1.42E-09 | 1.34E-09 | 1.14E-09 | 9.44E-10 | 5.34E-10 |
| suc  | Со                                     | 2.1      | 19.8     | 52.3     | 59.8     | 62.2     | 65.5     | 78.5     | 12.0     | 61.5     | 87.8     | 90.8     | 91.6     | 92.7     | 96.0     |
| utro | Ni                                     | 1.4      | 13.5     | 34.9     | 39.1     | 37.8     | 34.5     | 21.5     | 1.3      | 6.3      | 8.8      | 8.9      | 8.4      | 7.3      | 4.0      |
| Ne   | Cu                                     | 96.5     | 66.7     | 12.8     | 1.1      | 0.0      | 0.0      | 0.0      | 86.7     | 32.2     | 3.4      | 0.3      | 0.0      | 0.0      | 0.0      |
|      | Subtotal                               | 5.84E-09 | 6.16E-10 | 2.33E-10 | 2.04E-10 | 1.95E-10 | 1.84E-10 | 1.50E-10 | 6.60E-09 | 1.37E-09 | 9.86E-10 | 9.56E-10 | 9.45E-10 | 9.29E-10 | 8.71E-10 |
| Tota | al, Sv.m <sup>2</sup> .s <sup>-1</sup> | 7.38E-09 | 1.90E-09 | 1.41E-09 | 1.30E-09 | 1.10E-09 | 9.11E-10 | 5.19E-10 | 8.39E-09 | 2.90E-09 | 2.40E-09 | 2.29E-09 | 2.09E-09 | 1.87E-09 | 1.40E-09 |

Gamma-equivalents in SCT Barrel services by material (Type 1 and 2)

Table 20

Gamma-equivalents in SCT Forward services by material (Type 1 and 2)

|          |                                        |          |          |          | T=100 d  |          |          | T=10 y   |          |          |          |          |          |          |          |
|----------|----------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Hadrons  | Material                               | t= 1 d   | t= 3 d   | t= 5 d   | t= 7 d   | t= 15 d  | t= 30 d  | t= 100 d | t= 1 d   | t= 3 d   | t= 5 d   | t= 7 d   | t= 15 d  | t= 30 d  | t= 100 d |
|          | Ni                                     | 18.5     | 18.7     | 18.7     | 18.8     | 19.5     | 20.4     | 21.7     | 17.9     | 18.0     | 17.9     | 18.0     | 18.4     | 18.8     | 18.4     |
|          | Cu                                     | 81.5     | 81.3     | 81.3     | 81.2     | 80.5     | 79.6     | 78.3     | 82.1     | 82.0     | 82.1     | 82.0     | 81.6     | 81.2     | 81.6     |
|          | Subtotal                               | 1.20E-09 | 1.01E-09 | 9.17E-10 | 8.54E-10 | 7.02E-10 | 5.56E-10 | 2.79E-10 | 1.38E-09 | 1.19E-09 | 1.10E-09 | 1.03E-09 | 8.74E-10 | 7.16E-10 | 3.99E-10 |
| Neutrons | Со                                     | 1.9      | 18.5     | 50.7     | 58.6     | 61.0     | 64.3     | 77.7     | 13.1     | 63.1     | 87.5     | 90.2     | 91.0     | 92.1     | 95.7     |
|          | Ni                                     | 1.4      | 13.2     | 35.6     | 40.3     | 39.0     | 35.7     | 22.3     | 1.5      | 6.9      | 9.5      | 9.6      | 9.0      | 7.9      | 4.3      |
|          | Cu                                     | 96.7     | 68.3     | 13.7     | 1.1      | 0.0      | 0.0      | 0.0      | 85.4     | 30.0     | 3.0      | 0.2      | 0.0      | 0.0      | 0.0      |
|          | Subtotal                               | 3.45E-09 | 3.56E-10 | 1.29E-10 | 1.12E-10 | 1.07E-10 | 1.01E-10 | 8.16E-11 | 3.85E-09 | 7.62E-10 | 5.36E-10 | 5.18E-10 | 5.11E-10 | 5.02E-10 | 4.70E-10 |
| Tota     | al, Sv.m <sup>2</sup> .s <sup>-1</sup> | 4.64E-09 | 1.36E-09 | 1.05E-09 | 9.67E-10 | 8.09E-10 | 6.57E-10 | 3.60E-10 | 5.24E-09 | 1.95E-09 | 1.63E-09 | 1.55E-09 | 1.39E-09 | 1.22E-09 | 8.69E-10 |

| Gamma-equivalents in PIXEL and Ty | vpe 1 services by material |
|-----------------------------------|----------------------------|
|-----------------------------------|----------------------------|

|       |                           | T=100 d  |          |          |          |          |          |          |          | T=10 y   |          |          |          |          |          |  |  |
|-------|---------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|
| drons | Material                  | t= 1 d   | t= 3 d   | t= 5 d   | t= 7 d   | t= 15 d  | t= 30 d  | t= 100 d | t= 1 d   | t= 3 d   | t= 5 d   | t= 7 d   | t= 15 d  | t= 30 d  | t= 100 d |  |  |
|       | AI                        | 48.5     | 24.7     | 21.0     | 21.9     | 26.7     | 32.8     | 49.0     | 58.3     | 49.3     | 50.1     | 52.0     | 57.7     | 63.6     | 75.5     |  |  |
|       | Ti                        | 0.6      | 0.9      | 0.9      | 0.8      | 0.8      | 0.8      | 0.7      | 0.5      | 0.6      | 0.5      | 0.5      | 0.4      | 0.4      | 0.3      |  |  |
|       | Mn                        | 1.7      | 2.6      | 2.8      | 2.8      | 2.4      | 1.9      | 1.4      | 1.4      | 1.9      | 1.9      | 1.8      | 1.6      | 1.3      | 1.0      |  |  |
|       | Fe                        | 6.6      | 9.9      | 9.9      | 9.2      | 6.7      | 4.4      | 2.6      | 5.1      | 6.3      | 5.9      | 5.3      | 3.7      | 2.4      | 1.4      |  |  |
| На    | Ni                        | 9.3      | 15.4     | 17.2     | 17.9     | 19.1     | 19.8     | 16.8     | 7.7      | 10.4     | 10.8     | 10.8     | 10.6     | 9.9      | 6.7      |  |  |
|       | Cu                        | 22.4     | 34.8     | 37.6     | 37.8     | 36.7     | 34.3     | 25.7     | 18.7     | 24.1     | 24.4     | 23.8     | 21.7     | 19.1     | 13.0     |  |  |
|       | Pb                        | 10.9     | 11.7     | 10.6     | 9.6      | 7.6      | 6.1      | 4.0      | 8.3      | 7.5      | 6.4      | 5.7      | 4.3      | 3.3      | 2.1      |  |  |
|       | Subtotal                  | 2.19E-09 | 1.17E-09 | 9.72E-10 | 8.87E-10 | 7.16E-10 | 5.72E-10 | 3.56E-10 | 3.01E-09 | 1.99E-09 | 1.79E-09 | 1.70E-09 | 1.52E-09 | 1.36E-09 | 1.08E-09 |  |  |
|       | Cr                        | 0.4      | 1.6      | 2.1      | 2.2      | 1.9      | 1.4      | 0.3      | 0.4      | 0.9      | 1.0      | 1.0      | 0.8      | 0.6      | 0.1      |  |  |
|       | Mn                        | 0.5      | 0.1      | 0.2      | 0.2      | 0.2      | 0.2      | 0.2      | 0.5      | 0.2      | 0.2      | 0.2      | 0.2      | 0.2      | 0.2      |  |  |
|       | Fe                        | 0.2      | 0.9      | 1.2      | 1.3      | 1.3      | 1.1      | 0.7      | 0.3      | 0.7      | 0.8      | 0.8      | 0.7      | 0.7      | 0.5      |  |  |
|       | Со                        | 1.8      | 7.3      | 10.1     | 10.8     | 11.5     | 12.2     | 14.9     | 10.5     | 27.8     | 32.6     | 33.6     | 34.8     | 36.0     | 41.0     |  |  |
| s     | Ni                        | 1.8      | 7.3      | 9.9      | 10.3     | 10.3     | 9.5      | 6.0      | 1.7      | 4.5      | 5.2      | 5.3      | 5.1      | 4.6      | 2.7      |  |  |
| LO L  | Cu                        | 65.5     | 19.5     | 2.0      | 0.2      | 0.0      | 0.0      | 0.0      | 54.1     | 10.5     | 0.9      | 0.1      | 0.0      | 0.0      | 0.0      |  |  |
| ent   | Zn                        | 0.3      | 1.2      | 1.7      | 1.8      | 1.8      | 1.9      | 1.9      | 0.5      | 1.2      | 1.4      | 1.4      | 1.4      | 1.4      | 1.4      |  |  |
| z     | Ag                        | 11.4     | 46.4     | 63.7     | 67.4     | 70.9     | 72.5     | 75.0     | 17.3     | 45.8     | 53.5     | 54.8     | 55.7     | 55.7     | 53.5     |  |  |
|       | Sn                        | 0.3      | 1.3      | 1.6      | 1.6      | 1.3      | 1.0      | 0.7      | 0.4      | 0.9      | 1.0      | 1.0      | 0.9      | 0.7      | 0.6      |  |  |
|       | Au                        | 3.1      | 7.5      | 6.2      | 4.0      | 0.5      | 0.0      | 0.0      | 2.5      | 4.0      | 2.8      | 1.8      | 0.2      | 0.0      | 0.0      |  |  |
|       | AI                        | 14.3     | 6.4      | 1.0      | 0.1      | 0.0      | 0.0      | 0.0      | 11.8     | 3.4      | 0.4      | 0.0      | 0.0      | 0.0      | 0.0      |  |  |
|       | Subtotal                  | 1.89E-10 | 4.62E-11 | 3.35E-11 | 3.15E-11 | 2.93E-11 | 2.75E-11 | 2.19E-11 | 2.29E-10 | 8.61E-11 | 7.33E-11 | 7.11E-11 | 6.84E-11 | 6.57E-11 | 5.63E-11 |  |  |
| Tota  | l, Sv.m <sup>2</sup> .s⁻¹ | 2.38E-09 | 1.22E-09 | 1.01E-09 | 9.18E-10 | 7.45E-10 | 6.00E-10 | 3.78E-10 | 3.24E-09 | 2.07E-09 | 1.86E-09 | 1.77E-09 | 1.59E-09 | 1.42E-09 | 1.14E-09 |  |  |

|          |                                        | T=100 d  |          |          |          |          |          |          |          | T=10 y   |          |          |          |          |          |  |  |
|----------|----------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|--|
| Hadrons  | Material                               | t= 1 d   | t= 3 d   | t= 5 d   | t= 7 d   | t= 15 d  | t= 30 d  | t= 100 d | t= 1 d   | t= 3 d   | t= 5 d   | t= 7 d   | t= 15 d  | t= 30 d  | t= 100 d |  |  |
|          | Al                                     | 22.4     | 9.5      | 8.0      | 8.2      | 9.6      | 11.5     | 19.3     | 31.3     | 24.6     | 24.8     | 25.7     | 28.8     | 32.6     | 45.2     |  |  |
|          | Ni                                     | 31.1     | 36.4     | 36.8     | 36.7     | 36.8     | 37.0     | 35.1     | 26.9     | 29.4     | 29.1     | 28.7     | 27.7     | 26.6     | 21.2     |  |  |
|          | Cu                                     | 46.4     | 54.0     | 55.2     | 55.1     | 53.6     | 51.5     | 45.6     | 41.9     | 46.0     | 46.1     | 45.6     | 43.5     | 40.9     | 33.7     |  |  |
|          | Subtotal                               | 9.08E-10 | 6.52E-10 | 5.83E-10 | 5.46E-10 | 4.61E-10 | 3.78E-10 | 2.13E-10 | 1.18E-09 | 9.18E-10 | 8.48E-10 | 8.09E-10 | 7.18E-10 | 6.27E-10 | 4.29E-10 |  |  |
| Neutrons | Al                                     | 2.1      | 1.4      | 0.3      | 0.0      | 0.0      | 0.0      | 0.0      | 1.6      | 0.5      | 0.1      | 0.0      | 0.0      | 0.0      | 0.0      |  |  |
|          | Со                                     | 5.1      | 32.7     | 54.5     | 57.8     | 59.9     | 63.2     | 76.8     | 27.6     | 76.6     | 88.3     | 89.4     | 90.2     | 91.4     | 95.3     |  |  |
|          | Ni                                     | 3.9      | 24.6     | 40.2     | 41.8     | 40.1     | 36.8     | 23.2     | 3.4      | 9.3      | 10.5     | 10.5     | 9.8      | 8.6      | 4.7      |  |  |
|          | Cu                                     | 88.9     | 41.3     | 5.0      | 0.4      | 0.0      | 0.0      | 0.0      | 67.4     | 13.6     | 1.1      | 0.1      | 0.0      | 0.0      | 0.0      |  |  |
|          | Subtotal                               | 1.37E-09 | 2.16E-10 | 1.29E-10 | 1.22E-10 | 1.17E-10 | 1.10E-10 | 8.85E-11 | 1.81E-09 | 6.52E-10 | 5.66E-10 | 5.58E-10 | 5.51E-10 | 5.41E-10 | 5.06E-10 |  |  |
| Tota     | al, Sv.m <sup>2</sup> .s <sup>-1</sup> | 2.28E-09 | 8.68E-10 | 7.13E-10 | 6.68E-10 | 5.78E-10 | 4.89E-10 | 3.01E-10 | 2.99E-09 | 1.57E-09 | 1.41E-09 | 1.37E-09 | 1.27E-09 | 1.17E-09 | 9.35E-10 |  |  |

Gamma-equivalents in PIXEL Services by material (Type 2 only)
|      | Ganina-equivalents in D bean-pipe by material |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|------|-----------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|      |                                               |          |          |          | T=100 d  |          |          |          |          |          |          | T=10 y   |          |          |          |
|      | Material                                      | t= 1 d   | t= 3 d   | t= 5 d   | t= 7 d   | t= 15 d  | t= 30 d  | t= 100 d | t= 1 d   | t= 3 d   | t= 5 d   | t= 7 d   | t= 15 d  | t= 30 d  | t= 100 d |
|      | Be                                            | 21.6     | 46.5     | 53.6     | 54.5     | 53.9     | 50.9     | 32.2     | 15.8     | 24.2     | 25.5     | 25.4     | 23.9     | 21.0     | 10.3     |
| s    | Al                                            | 73.2     | 44.0     | 36.6     | 36.4     | 39.3     | 44.1     | 64.3     | 80.2     | 70.5     | 69.4     | 69.9     | 72.5     | 76.3     | 87.8     |
| Lon  | Ti                                            | 0.3      | 0.6      | 0.5      | 0.5      | 0.4      | 0.4      | 0.3      | 0.2      | 0.3      | 0.3      | 0.2      | 0.2      | 0.2      | 0.1      |
| ad   | Mn                                            | 2.4      | 4.5      | 4.7      | 4.4      | 3.4      | 2.5      | 1.8      | 1.9      | 2.6      | 2.6      | 2.4      | 1.9      | 1.5      | 1.1      |
| Т    | Fe                                            | 1.7      | 3.1      | 3.0      | 2.7      | 1.7      | 1.1      | 0.6      | 1.2      | 1.6      | 1.4      | 1.3      | 0.8      | 0.5      | 0.3      |
|      | Cu                                            | 0.8      | 1.4      | 1.5      | 1.5      | 1.2      | 1.1      | 0.8      | 0.6      | 0.8      | 0.8      | 0.7      | 0.6      | 0.5      | 0.4      |
|      | Subtotal                                      | 2.06E-10 | 9.31E-11 | 7.87E-11 | 7.54E-11 | 6.87E-11 | 5.99E-11 | 3.81E-11 | 3.09E-10 | 1.96E-10 | 1.81E-10 | 1.77E-10 | 1.70E-10 | 1.59E-10 | 1.31E-10 |
|      | Al                                            | 84.1     | 75.8     | 38.4     | 7.0      | 0.0      | 0.0      | 0.0      | 83.1     | 68.8     | 26.1     | 3.9      | 0.0      | 0.0      | 0.0      |
|      | Ti                                            | 0.2      | 1.0      | 3.9      | 5.6      | 5.3      | 4.9      | 3.5      | 0.2      | 1.1      | 3.0      | 3.6      | 3.3      | 3.0      | 2.1      |
| S    | Cr                                            | 0.1      | 1.0      | 4.5      | 7.2      | 6.7      | 4.9      | 1.1      | 0.1      | 0.9      | 3.1      | 4.1      | 3.7      | 2.7      | 0.6      |
| ron  | Mn                                            | 1.7      | 5.7      | 26.6     | 44.6     | 49.8     | 51.5     | 56.0     | 2.4      | 11.0     | 38.2     | 52.7     | 56.1     | 57.1     | 60.2     |
| eut  | Fe                                            | 0.1      | 1.2      | 5.4      | 9.0      | 9.8      | 9.6      | 9.1      | 0.3      | 1.9      | 6.7      | 9.2      | 9.6      | 9.5      | 9.3      |
| Ž    | Zn                                            | 0.4      | 3.3      | 15.3     | 25.6     | 28.4     | 29.1     | 30.3     | 0.8      | 5.4      | 18.8     | 25.8     | 27.4     | 27.6     | 27.9     |
|      | Mg                                            | 12.9     | 11.6     | 5.9      | 1.1      | 0.0      | 0.0      | 0.0      | 12.7     | 10.6     | 4.0      | 0.6      | 0.0      | 0.0      | 0.0      |
|      | Subtotal                                      | 4.31E-12 | 5.20E-13 | 1.12E-13 | 6.64E-14 | 5.83E-14 | 5.46E-14 | 4.30E-14 | 4.36E-12 | 5.73E-13 | 1.65E-13 | 1.19E-13 | 1.10E-13 | 1.04E-13 | 8.46E-14 |
| Tota | I, Sv.m <sup>2</sup> .s <sup>-1</sup>         | 2.10E-10 | 9.36E-11 | 7.88E-11 | 7.54E-11 | 6.88E-11 | 6.00E-11 | 3.81E-11 | 3.13E-10 | 1.96E-10 | 1.81E-10 | 1.77E-10 | 1.70E-10 | 1.59E-10 | 1.31E-10 |

Gamma-equivalents in ID beam-pipe by material

|      | Gamma-equivalents in LAr beam-pipe by material |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
|------|------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|      |                                                |          |          |          | T=100 d  |          |          |          | T=10 y   |          |          |          |          |          |          |
|      | Material                                       | t= 1 d   | t= 3 d   | t= 5 d   | t= 7 d   | t= 15 d  | t= 30 d  | t= 100 d | t= 1 d   | t= 3 d   | t= 5 d   | t= 7 d   | t= 15 d  | t= 30 d  | t= 100 d |
| SUG  | Mn                                             | 9.2      | 9.5      | 9.8      | 10.0     | 10.6     | 10.5     | 11.3     | 10.2     | 10.7     | 11.1     | 11.5     | 12.6     | 13.4     | 16.1     |
| adro | Fe                                             | 67.3     | 65.8     | 63.9     | 61.8     | 53.8     | 44.5     | 37.4     | 65.5     | 63.9     | 61.9     | 59.9     | 52.6     | 45.1     | 41.4     |
| Нa   | Ni                                             | 23.4     | 24.6     | 26.3     | 28.1     | 35.5     | 44.9     | 51.1     | 24.1     | 25.3     | 26.8     | 28.4     | 34.6     | 41.2     | 41.9     |
|      | Subtotal                                       | 9.37E-08 | 7.65E-08 | 6.57E-08 | 5.76E-08 | 3.87E-08 | 2.51E-08 | 1.16E-08 | 1.02E-07 | 8.50E-08 | 7.41E-08 | 6.59E-08 | 4.66E-08 | 3.25E-08 | 1.72E-08 |
|      | Cr                                             | 1.2      | 1.2      | 1.2      | 1.1      | 1.0      | 0.8      | 0.2      | 0.9      | 0.9      | 0.8      | 0.8      | 0.7      | 0.5      | 0.1      |
|      | Mn                                             | 0.8      | 0.5      | 0.5      | 0.5      | 0.5      | 0.6      | 0.9      | 0.9      | 0.7      | 0.7      | 0.7      | 0.7      | 0.8      | 1.0      |
| suc  | Fe                                             | 9.0      | 9.1      | 9.2      | 9.4      | 9.8      | 10.6     | 15.5     | 12.5     | 12.6     | 12.8     | 12.9     | 13.4     | 14.2     | 18.1     |
| utro | Co                                             | 3.9      | 4.0      | 4.1      | 4.1      | 4.4      | 5.0      | 8.3      | 17.6     | 17.9     | 18.2     | 18.5     | 19.5     | 21.5     | 31.8     |
| Nei  | Ni                                             | 83.4     | 84.0     | 84.1     | 84.1     | 83.9     | 82.9     | 75.1     | 67.0     | 67.0     | 66.8     | 66.6     | 65.4     | 62.8     | 48.9     |
|      | Мо                                             | 1.6      | 1.2      | 1.0      | 0.8      | 0.4      | 0.2      | 0.0      | 1.1      | 0.9      | 0.7      | 0.5      | 0.3      | 0.1      | 0.0      |
|      | Subtotal                                       | 2.43E-09 | 2.37E-09 | 2.32E-09 | 2.28E-09 | 2.11E-09 | 1.84E-09 | 1.03E-09 | 3.48E-09 | 3.41E-09 | 3.36E-09 | 3.31E-09 | 3.11E-09 | 2.80E-09 | 1.84E-09 |
| Tot  | al, Sv.m <sup>2</sup> .s <sup>-1</sup>         | 9.61E-08 | 7.89E-08 | 6.80E-08 | 5.99E-08 | 4.08E-08 | 2.69E-08 | 1.00E+02 | 1.06E-07 | 8.84E-08 | 7.74E-08 | 6.92E-08 | 4.97E-08 | 3.53E-08 | 1.91E-08 |

| Туре         | Element               | Cooling time, t |       |       |       |       |       |       |  |  |  |
|--------------|-----------------------|-----------------|-------|-------|-------|-------|-------|-------|--|--|--|
|              |                       | 1 d             | 3 d   | 5 d   | 7 d   | 15 d  | 30 d  | 100 d |  |  |  |
|              | ID beam pipe          | 7.17            | 2.57  | 2.00  | 1.89  | 1.73  | 1.56  | 1.21  |  |  |  |
|              | LAr beam pipe         | 247             | 205   | 176   | 155   | 104   | 66.9  | 30.3  |  |  |  |
|              | Pixel type 2 services | 9.31            | 6.58  | 5.87  | 5.48  | 4.61  | 3.78  | 2.13  |  |  |  |
|              | Pixel                 | 145             | 63.5  | 51.3  | 47.4  | 40.3  | 34.0  | 24.1  |  |  |  |
|              | SCT barrel            | 0.20            | 0.12  | 0.10  | 0.09  | 0.08  | 0.06  | 0.04  |  |  |  |
| Hadron       | SCT forward           | 1.18            | 0.56  | 0.47  | 0.44  | 0.38  | 0.33  | 0.22  |  |  |  |
| activation   | SCT barrel services   | 2.58            | 2.16  | 1.97  | 1.84  | 1.53  | 1.22  | 0.62  |  |  |  |
|              | SCT forward services  | 4.03            | 3.39  | 3.09  | 2.88  | 2.36  | 1.86  | 0.93  |  |  |  |
|              | TRT                   | 1.57            | 0.77  | 0.61  | 0.55  | 0.43  | 0.34  | 0.24  |  |  |  |
|              | TRT services          | 2.46            | 2.00  | 1.76  | 1.60  | 1.20  | 0.89  | 0.45  |  |  |  |
|              | LAr Barrel            | 14.8            | 9.50  | 7.40  | 6.20  | 3.70  | 2.10  | 1.80  |  |  |  |
|              | LAr EndCap            | 27.0            | 15.8  | 13.0  | 11.3  | 7.90  | 5.20  | 2.40  |  |  |  |
|              | ID beam pipe          | 0.16            | 0.02  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |  |  |  |
|              | LAr beam pipe         | 6.39            | 6.14  | 5.99  | 5.87  | 5.44  | 4.78  | 2.87  |  |  |  |
|              | Pixel type 2 services | 8.98            | 1.44  | 0.87  | 0.82  | 0.79  | 0.74  | 0.58  |  |  |  |
|              | Pixel                 | 13.4            | 1.48  | 0.45  | 0.34  | 0.27  | 0.24  | 0.17  |  |  |  |
|              | SCT barrel            | 0.16            | 0.06  | 0.05  | 0.04  | 0.03  | 0.03  | 0.02  |  |  |  |
| Neutron      | SCT forward           | 0.88            | 0.44  | 0.34  | 0.30  | 0.24  | 0.22  | 0.18  |  |  |  |
| activation   | SCT barrel services   | 9.48            | 0.99  | 0.37  | 0.32  | 0.31  | 0.29  | 0.24  |  |  |  |
|              | SCT forward services  | 10.9            | 1.12  | 0.41  | 0.35  | 0.34  | 0.32  | 0.26  |  |  |  |
|              | TRT                   | 3.60            | 1.30  | 0.68  | 0.42  | 0.14  | 0.10  | 0.08  |  |  |  |
|              | TRT services          | 5.80            | 0.65  | 0.28  | 0.24  | 0.23  | 0.20  | 0.14  |  |  |  |
|              | LAr Barrel            | 17.0            | 1.00  | 0.70  | 0.67  | 0.61  | 0.51  | 0.40  |  |  |  |
|              | LAr EndCap            | 2.50            | 0.90  | 0.60  | 0.45  | 0.42  | 0.40  | 0.38  |  |  |  |
| Total, µSv/h |                       | 541.5           | 327.5 | 274.3 | 244.5 | 177.0 | 126.1 | 69.8  |  |  |  |

Dose rate at R= 175 mm, Z= 3340 mm for exposure time T=100 days and different cooling time

| Dose rate at R= 175 mm, Z= 3340 mm | n for exposure time T=1 | 10 years and different cooling time |
|------------------------------------|-------------------------|-------------------------------------|
|------------------------------------|-------------------------|-------------------------------------|

| Туре                 | Element               | Cooling time, t |        |        |        |        |        |       |  |  |
|----------------------|-----------------------|-----------------|--------|--------|--------|--------|--------|-------|--|--|
|                      |                       | 1 d             | 3 d    | 5 d    | 7 d    | 15 d   | 30 d   | 100 d |  |  |
|                      | ID beam pipe          | 11.40           | 6.64   | 6.05   | 5.94   | 5.82   | 5.58   | 5.02  |  |  |
|                      | LAr beam pipe         | 270.00          | 227.00 | 198.00 | 177.00 | 126.00 | 87.30  | 45.70 |  |  |
|                      | Pixel type 2 services | 12.10           | 9.38   | 8.66   | 8.26   | 7.34   | 6.41   | 4.43  |  |  |
|                      | Pixel                 | 216.00          | 135.00 | 123.00 | 119.00 | 111.00 | 104.00 | 89.30 |  |  |
|                      | SCT barrel            | 0.30            | 0.22   | 0.20   | 0.19   | 0.18   | 0.16   | 0.13  |  |  |
| Hadron<br>activation | SCT forward           | 1.80            | 1.18   | 1.08   | 1.05   | 0.99   | 0.93   | 0.78  |  |  |
|                      | SCT barrel services   | 3.00            | 2.57   | 2.38   | 2.24   | 1.92   | 1.58   | 0.89  |  |  |
|                      | SCT forward services  | 4.65            | 4.01   | 3.70   | 3.48   | 2.93   | 2.40   | 1.33  |  |  |
|                      | TRT                   | 2.31            | 1.50   | 1.35   | 1.28   | 1.16   | 1.06   | 0.91  |  |  |
|                      | TRT services          | 2.84            | 2.37   | 2.14   | 1.96   | 1.55   | 1.22   | 0.72  |  |  |
|                      | LAr Barrel            | 18.70           | 14.60  | 11.80  | 10.00  | 6.40   | 5.90   | 5.50  |  |  |
|                      | LAr EndCap            | 32.00           | 21.40  | 18.00  | 15.90  | 11.80  | 9.00   | 6.70  |  |  |
|                      | ID beam pipe          | 0.16            | 0.02   | 0.01   | 0.00   | 0.00   | 0.00   | 0.00  |  |  |
|                      | LAr beam pipe         | 12.80           | 12.50  | 12.40  | 12.20  | 11.70  | 11.00  | 8.62  |  |  |
|                      | Pixel type 2 services | 11.80           | 4.21   | 3.64   | 3.59   | 3.55   | 3.47   | 3.23  |  |  |
|                      | Pixel                 | 13.70           | 1.82   | 0.79   | 0.67   | 0.60   | 0.56   | 0.46  |  |  |
|                      | SCT barrel            | 0.19            | 0.09   | 0.08   | 0.07   | 0.06   | 0.06   | 0.05  |  |  |
| Neutron              | SCT forward           | 1.09            | 0.65   | 0.55   | 0.50   | 0.44   | 0.41   | 0.34  |  |  |
| activation           | SCT barrel services   | 10.70           | 2.16   | 1.54   | 1.49   | 1.47   | 1.44   | 1.35  |  |  |
|                      | SCT forward services  | 12.20           | 2.40   | 1.69   | 1.63   | 1.61   | 1.58   | 1.48  |  |  |
|                      | TRT                   | 3.69            | 1.40   | 0.77   | 0.51   | 0.23   | 0.19   | 0.15  |  |  |
|                      | TRT services          | 6.40            | 1.26   | 0.88   | 0.84   | 0.82   | 0.79   | 0.71  |  |  |
|                      | LAr Barrel            | 19.00           | 2.40   | 2.20   | 2.16   | 2.07   | 1.95   | 1.80  |  |  |
|                      | LAr EndCap            | 4.40            | 3.50   | 2.50   | 2.40   | 2.30   | 2.20   | 2.20  |  |  |
| Total, µSv/h         |                       | 671.2           | 458.3  | 403.4  | 372.4  | 301.9  | 249.2  | 181.8 |  |  |

| Flammer 4                  |                                                                 |
|----------------------------|-----------------------------------------------------------------|
| Dose rate at R= 400 mm, Z= | 3443 mm for exposure time T=100 days and different cooling time |

| Туре              | Element               | Cooling time, t |       |       |       |       |       |       |  |  |
|-------------------|-----------------------|-----------------|-------|-------|-------|-------|-------|-------|--|--|
|                   |                       | 1 d             | 3 d   | 5 d   | 7 d   | 15 d  | 30 d  | 100 d |  |  |
|                   | ID beam pipe          | 3.26            | 1.12  | 0.86  | 0.81  | 0.74  | 0.67  | 0.55  |  |  |
|                   | LAr beam pipe         | 214             | 177   | 153   | 134   | 90    | 58    | 26    |  |  |
|                   | Pixel type 2 services | 30.40           | 21.40 | 19.00 | 17.80 | 14.90 | 12.20 | 6.86  |  |  |
|                   | Pixel                 | 16.90           | 9.17  | 7.69  | 7.06  | 5.75  | 4.61  | 2.84  |  |  |
|                   | SCT barrel            | 0.19            | 0.11  | 0.09  | 0.09  | 0.07  | 0.06  | 0.04  |  |  |
| Hadron activation | SCT forward           | 0.96            | 0.46  | 0.38  | 0.36  | 0.31  | 0.27  | 0.18  |  |  |
|                   | SCT barrel services   | 2.53            | 2.11  | 1.93  | 1.80  | 1.50  | 1.20  | 0.61  |  |  |
|                   | SCT forward services  | 3.71            | 3.12  | 2.84  | 2.64  | 2.17  | 1.71  | 0.86  |  |  |
|                   | TRT                   | 1.55            | 0.75  | 0.60  | 0.54  | 0.42  | 0.34  | 0.23  |  |  |
|                   | TRT services          | 2.48            | 2.01  | 1.78  | 1.61  | 1.21  | 0.89  | 0.46  |  |  |
|                   | LAr Barrel            | 14.80           | 9.40  | 7.40  | 6.20  | 3.70  | 2.10  | 1.80  |  |  |
|                   | LAr EndCap            | 23.00           | 13.40 | 11.00 | 9.60  | 6.70  | 4.70  | 2.20  |  |  |
|                   | ID beam pipe          | 0.08            | 0.01  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |  |  |
|                   | LAr beam pipe         | 5.64            | 5.43  | 5.30  | 5.19  | 4.81  | 4.23  | 2.52  |  |  |
|                   | Pixel type 2 services | 24.20           | 3.95  | 2.43  | 2.30  | 2.20  | 2.05  | 1.59  |  |  |
|                   | Pixel                 | 3.64            | 0.39  | 0.12  | 0.09  | 0.06  | 0.05  | 0.03  |  |  |
|                   | SCT barrel            | 0.15            | 0.06  | 0.04  | 0.04  | 0.03  | 0.03  | 0.02  |  |  |
| Neutron           | SCT forward           | 0.73            | 0.37  | 0.28  | 0.25  | 0.20  | 0.18  | 0.15  |  |  |
| activation        | SCT barrel services   | 9.23            | 0.97  | 0.36  | 0.31  | 0.30  | 0.28  | 0.23  |  |  |
|                   | SCT forward services  | 10.30           | 1.06  | 0.38  | 0.33  | 0.32  | 0.30  | 0.24  |  |  |
|                   | TRT                   | 3.56            | 1.30  | 0.67  | 0.41  | 0.13  | 0.09  | 0.07  |  |  |
|                   | TRT services          | 5.84            | 0.66  | 0.28  | 0.25  | 0.23  | 0.20  | 0.14  |  |  |
|                   | LAr Barrel            | 17.00           | 1.00  | 0.70  | 0.67  | 0.61  | 0.51  | 0.40  |  |  |
|                   | LAr EndCap            | 2.30            | 0.90  | 0.50  | 0.37  | 0.35  | 0.33  | 0.30  |  |  |
| Total, µSv/h      |                       | 396.4           | 256.1 | 217.6 | 192.7 | 136.7 | 95.0  | 48.6  |  |  |

Table 28

Dose rate at R= 400 mm, Z= 3443 mm for exposure time T=10 years and different cooling time

| Туре         | Element               | Cooling time, t |       |       |       |       |       |       |  |  |  |
|--------------|-----------------------|-----------------|-------|-------|-------|-------|-------|-------|--|--|--|
|              |                       | 1 d             | 3 d   | 5 d   | 7 d   | 15 d  | 30 d  | 100 d |  |  |  |
|              | ID beam pipe          | 5.22            | 3.02  | 2.75  | 2.69  | 2.65  | 2.55  | 2.33  |  |  |  |
|              | LAr beam pipe         | 233             | 196   | 172   | 153   | 109   | 76    | 40    |  |  |  |
|              | Pixel type 2 services | 39.60           | 30.50 | 28.10 | 26.80 | 23.80 | 20.80 | 14.40 |  |  |  |
|              | Pixel                 | 23.50           | 15.70 | 14.20 | 13.60 | 12.20 | 10.90 | 8.69  |  |  |  |
|              | SCT barrel            | 0.28            | 0.20  | 0.19  | 0.18  | 0.17  | 0.15  | 0.12  |  |  |  |
| Hadron       | SCT forward           | 1.47            | 0.96  | 0.88  | 0.86  | 0.81  | 0.76  | 0.64  |  |  |  |
| activation   | SCT barrel services   | 2.93            | 2.51  | 2.32  | 2.19  | 1.87  | 1.55  | 0.87  |  |  |  |
|              | SCT forward services  | 4.28            | 3.68  | 3.40  | 3.20  | 2.70  | 2.21  | 1.23  |  |  |  |
|              | TRT                   | 2.27            | 1.47  | 1.32  | 1.25  | 1.13  | 1.03  | 0.89  |  |  |  |
|              | TRT services          | 2.87            | 2.39  | 2.15  | 1.98  | 1.57  | 1.23  | 0.73  |  |  |  |
|              | LAr Barrel            | 18.70           | 14.60 | 11.80 | 10.00 | 6.40  | 5.90  | 5.50  |  |  |  |
|              | LAr EndCap            | 28.00           | 19.10 | 16.00 | 14.20 | 10.50 | 8.00  | 6.00  |  |  |  |
|              | ID beam pipe          | 0.08            | 0.01  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |  |  |  |
|              | LAr beam pipe         | 11.00           | 10.80 | 10.70 | 10.50 | 10.10 | 9.40  | 7.32  |  |  |  |
|              | Pixel type 2 services | 31.60           | 11.30 | 9.80  | 9.65  | 9.52  | 9.32  | 8.61  |  |  |  |
|              | Pixel                 | 3.71            | 0.47  | 0.20  | 0.16  | 0.13  | 0.12  | 0.10  |  |  |  |
|              | SCT barrel            | 0.18            | 0.09  | 0.07  | 0.07  | 0.06  | 0.05  | 0.04  |  |  |  |
| Neutron      | SCT forward           | 0.90            | 0.54  | 0.46  | 0.42  | 0.36  | 0.34  | 0.28  |  |  |  |
| activation   | SCT barrel services   | 10.40           | 2.10  | 1.49  | 1.45  | 1.43  | 1.40  | 1.31  |  |  |  |
|              | SCT forward services  | 11.50           | 2.27  | 1.59  | 1.54  | 1.52  | 1.49  | 1.40  |  |  |  |
|              | TRT                   | 3.65            | 1.38  | 0.76  | 0.50  | 0.22  | 0.17  | 0.14  |  |  |  |
|              | TRT services          | 6.45            | 1.26  | 0.88  | 0.85  | 0.83  | 0.80  | 0.71  |  |  |  |
|              | LAr Barrel            | 19.00           | 2.40  | 2.20  | 2.16  | 2.07  | 1.95  | 1.80  |  |  |  |
|              | LAr EndCap            | 4.20            | 3.00  | 2.10  | 2.07  | 2.00  | 1.95  | 1.90  |  |  |  |
| Total, µSv/h |                       | 464.8           | 325.7 | 285.4 | 259.3 | 201.0 | 157.7 | 104.7 |  |  |  |

| Туре       | Element               | Cooling time, t |       |       |       |      |      |       |  |  |  |  |
|------------|-----------------------|-----------------|-------|-------|-------|------|------|-------|--|--|--|--|
|            |                       | 1 d             | 3 d   | 5 d   | 7 d   | 15 d | 30 d | 100 d |  |  |  |  |
|            | ID beam pipe          | 1.20            | 0.43  | 0.34  | 0.32  | 0.29 | 0.26 | 0.20  |  |  |  |  |
|            | LAr beam pipe         | 127.            | 105.  | 90.5  | 79.7  | 53.5 | 34.5 | 15.8  |  |  |  |  |
|            | Pixel type 2 services | 25.6            | 18.1  | 16.2  | 15.2  | 12.8 | 10.5 | 5.97  |  |  |  |  |
|            | Pixel                 | 5.69            | 2.91  | 2.41  | 2.21  | 1.81 | 1.47 | 0.94  |  |  |  |  |
|            | SCT barrel            | 0.18            | 0.11  | 0.09  | 0.08  | 0.07 | 0.06 | 0.04  |  |  |  |  |
| Hadron     | SCT forward           | 0.85            | 0.40  | 0.34  | 0.32  | 0.28 | 0.24 | 0.16  |  |  |  |  |
| activation | SCT barrel services   | 2.84            | 2.38  | 2.17  | 2.03  | 1.69 | 1.35 | 0.69  |  |  |  |  |
|            | SCT forward services  | 3.91            | 3.29  | 3.00  | 2.79  | 2.30 | 1.82 | 0.91  |  |  |  |  |
|            | TRT                   | 1.73            | 0.84  | 0.67  | 0.60  | 0.47 | 0.38 | 0.26  |  |  |  |  |
|            | TRT services          | 2.93            | 2.38  | 2.10  | 1.90  | 1.43 | 1.06 | 0.54  |  |  |  |  |
|            | LAr Barrel            | 13.9            | 8.86  | 6.90  | 5.78  | 3.45 | 1.96 | 1.80  |  |  |  |  |
|            | LAr EndCap            | 19.0            | 11.3  | 9.30  | 8.08  | 5.65 | 3.72 | 1.70  |  |  |  |  |
|            | ID beam pipe          | 0.03            | 0.00  | 0.00  | 0.00  | 0.00 | 0.00 | 0.00  |  |  |  |  |
|            | LAr beam pipe         | 3.50            | 3.38  | 3.31  | 3.24  | 3.00 | 2.63 | 1.54  |  |  |  |  |
|            | Pixel type 2 services | 28.5            | 4.46  | 2.66  | 2.50  | 2.41 | 2.27 | 1.81  |  |  |  |  |
|            | Pixel                 | 0.75            | 0.10  | 0.04  | 0.03  | 0.03 | 0.02 | 0.02  |  |  |  |  |
|            | SCT barrel            | 0.14            | 0.06  | 0.04  | 0.04  | 0.03 | 0.03 | 0.02  |  |  |  |  |
| Neutron    | SCT forward           | 0.65            | 0.33  | 0.25  | 0.22  | 0.17 | 0.16 | 0.13  |  |  |  |  |
| activation | SCT barrel services   | 10.3            | 1.08  | 0.40  | 0.35  | 0.34 | 0.32 | 0.25  |  |  |  |  |
|            | SCT forward services  | 11.2            | 1.16  | 0.42  | 0.37  | 0.35 | 0.33 | 0.27  |  |  |  |  |
|            | TRT                   | 3.95            | 1.43  | 0.74  | 0.45  | 0.14 | 0.09 | 0.07  |  |  |  |  |
|            | TRT services          | 6.83            | 0.77  | 0.32  | 0.29  | 0.26 | 0.23 | 0.16  |  |  |  |  |
|            | LAr Barrel            | 15.6            | 1.03  | 0.72  | 0.69  | 0.63 | 0.52 | 0.44  |  |  |  |  |
|            | LAr EndCap            | 2.00            | 0.65  | 0.43  | 0.32  | 0.31 | 0.30 | 0.29  |  |  |  |  |
|            | Total, µSv/h          | 288.3           | 170.4 | 143.4 | 127.5 | 91.4 | 64.2 | 34.0  |  |  |  |  |

Dose rate at R= 700 mm, Z= 3440 mm for exposure time T=100 days and different cooling time

Dose rate at R= 700 mm, Z= 3440 mm for exposure time T=10 years and different cooling time

| Туре         | Element               | Cooling time, t |       |       |       |       |       |       |  |  |
|--------------|-----------------------|-----------------|-------|-------|-------|-------|-------|-------|--|--|
|              |                       | 1 d             | 3 d   | 5 d   | 7 d   | 15 d  | 30 d  | 100 d |  |  |
|              | ID beam pipe          | 1.90            | 1.11  | 1.02  | 1.00  | 0.98  | 0.93  | 0.84  |  |  |
|              | LAr beam pipe         | 138.0           | 116.0 | 102.0 | 90.8  | 64.8  | 45.0  | 23.7  |  |  |
|              | Pixel type 2 services | 33.5            | 26.0  | 24.0  | 22.9  | 20.4  | 17.9  | 12.4  |  |  |
|              | Pixel                 | 8.05            | 5.26  | 4.76  | 4.55  | 4.13  | 3.74  | 3.05  |  |  |
|              | SCT barrel            | 0.27            | 0.20  | 0.18  | 0.18  | 0.16  | 0.15  | 0.12  |  |  |
| Hadron       | SCT forward           | 1.29            | 0.85  | 0.78  | 0.76  | 0.71  | 0.67  | 0.56  |  |  |
| activation   | SCT barrel services   | 3.30            | 2.83  | 2.62  | 2.47  | 2.11  | 1.74  | 0.98  |  |  |
|              | SCT forward services  | 4.52            | 3.89  | 3.59  | 3.38  | 2.86  | 2.34  | 1.30  |  |  |
|              | TRT                   | 2.55            | 1.65  | 1.48  | 1.41  | 1.28  | 1.17  | 1.01  |  |  |
|              | TRT services          | 3.38            | 2.82  | 2.54  | 2.34  | 1.85  | 1.46  | 0.86  |  |  |
|              | LAr Barrel            | 18.4            | 13.9  | 11.3  | 9.58  | 6.33  | 6.23  | 5.90  |  |  |
|              | LAr EndCap            | 23.0            | 15.8  | 13.2  | 11.7  | 8.66  | 6.81  | 5.11  |  |  |
|              | ID beam pipe          | 0.03            | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |  |  |
|              | LAr beam pipe         | 6.29            | 6.16  | 6.08  | 6.00  | 5.73  | 5.29  | 3.97  |  |  |
|              | Pixel type 2 services | 37.4            | 13.3  | 11.5  | 11.3  | 11.2  | 11.0  | 10.3  |  |  |
|              | Pixel                 | 0.79            | 0.13  | 0.08  | 0.07  | 0.06  | 0.06  | 0.05  |  |  |
|              | SCT barrel            | 0.17            | 0.08  | 0.07  | 0.06  | 0.06  | 0.05  | 0.04  |  |  |
| Neutron      | SCT forward           | 0.81            | 0.48  | 0.41  | 0.37  | 0.32  | 0.30  | 0.25  |  |  |
| activation   | SCT barrel services   | 11.6            | 2.34  | 1.66  | 1.61  | 1.59  | 1.56  | 1.46  |  |  |
|              | SCT forward services  | 12.5            | 2.48  | 1.74  | 1.69  | 1.67  | 1.64  | 1.53  |  |  |
|              | TRT                   | 4.04            | 1.52  | 0.83  | 0.54  | 0.22  | 0.17  | 0.14  |  |  |
|              | TRT services          | 7.54            | 1.47  | 1.03  | 0.99  | 0.96  | 0.93  | 0.83  |  |  |
|              | LAr Barrel            | 17.1            | 2.30  | 2.11  | 2.07  | 1.99  | 1.84  | 1.70  |  |  |
|              | LAr EndCap            | 3.44            | 2.56  | 1.79  | 1.76  | 1.70  | 1.62  | 1.58  |  |  |
| Total, µSv/h |                       | 339.9           | 223.1 | 194.8 | 177.5 | 139.8 | 112.6 | 77.7  |  |  |

| Туре       | Element               | Cooling time, t |        |       |       |       |       |       |  |  |  |
|------------|-----------------------|-----------------|--------|-------|-------|-------|-------|-------|--|--|--|
|            |                       | 1 d             | 3 d    | 5 d   | 7 d   | 15 d  | 30 d  | 100 d |  |  |  |
|            | ID beam pipe          | 8.41            | 2.67   | 1.98  | 1.86  | 1.70  | 1.57  | 1.37  |  |  |  |
|            | LAr beam pipe         | 1250.           | 1040.  | 893.  | 786.  | 527.  | 338.  | 153.  |  |  |  |
|            | Pixel type 2 services | 5.96            | 4.22   | 3.77  | 3.52  | 2.97  | 2.43  | 1.37  |  |  |  |
|            | Pixel                 | 8.56            | 4.57   | 3.81  | 3.49  | 2.84  | 2.28  | 1.41  |  |  |  |
|            | SCT barrel            | 0.15            | 0.09   | 0.08  | 0.07  | 0.06  | 0.05  | 0.03  |  |  |  |
| Hadron     | SCT forward           | 0.66            | 0.32   | 0.26  | 0.25  | 0.21  | 0.18  | 0.12  |  |  |  |
| activation | SCT barrel services   | 1.91            | 1.60   | 1.46  | 1.36  | 1.13  | 0.91  | 0.46  |  |  |  |
|            | SCT forward services  | 2.54            | 2.13   | 1.94  | 1.81  | 1.49  | 1.18  | 0.59  |  |  |  |
|            | TRT                   | 1.11            | 0.54   | 0.43  | 0.39  | 0.31  | 0.25  | 0.17  |  |  |  |
|            | TRT services          | 1.94            | 1.57   | 1.39  | 1.26  | 0.94  | 0.70  | 0.36  |  |  |  |
|            | LAr Barrel            | 11.3            | 7.07   | 5.51  | 4.62  | 2.76  | 1.56  | 1.53  |  |  |  |
|            | LAr EndCap            | 31.0            | 18.5   | 15.2  | 13.2  | 9.24  | 6.08  | 3.03  |  |  |  |
|            | ID beam pipe          | 0.25            | 0.03   | 0.01  | 0.00  | 0.00  | 0.00  | 0.00  |  |  |  |
|            | LAr beam pipe         | 33.0            | 31.5   | 30.7  | 30.1  | 27.9  | 24.5  | 15.2  |  |  |  |
|            | Pixel type 2 services | 6.21            | 0.99   | 0.60  | 0.56  | 0.54  | 0.51  | 0.40  |  |  |  |
|            | Pixel                 | 1.16            | 0.14   | 0.05  | 0.04  | 0.03  | 0.03  | 0.02  |  |  |  |
|            | SCT barrel            | 0.12            | 0.05   | 0.04  | 0.03  | 0.03  | 0.02  | 0.02  |  |  |  |
| Neutron    | SCT forward           | 0.51            | 0.26   | 0.20  | 0.17  | 0.14  | 0.13  | 0.10  |  |  |  |
| activation | SCT barrel services   | 6.99            | 0.73   | 0.27  | 0.24  | 0.23  | 0.22  | 0.17  |  |  |  |
|            | SCT forward services  | 7.18            | 0.74   | 0.27  | 0.23  | 0.22  | 0.21  | 0.17  |  |  |  |
|            | TRT                   | 2.33            | 0.83   | 0.44  | 0.28  | 0.10  | 0.07  | 0.06  |  |  |  |
|            | TRT services          | 4.61            | 0.52   | 0.22  | 0.19  | 0.18  | 0.16  | 0.11  |  |  |  |
|            | LAr Barrel            | 14.2            | 0.75   | 0.52  | 0.50  | 0.45  | 0.38  | 0.30  |  |  |  |
|            | LAr EndCap            | 3.10            | 0.90   | 0.60  | 0.45  | 0.42  | 0.41  | 0.40  |  |  |  |
|            | Total, µSv/h          | 1403.2          | 1120.7 | 962.7 | 850.6 | 580.9 | 381.8 | 180.4 |  |  |  |

Dose rate at R= 175 mm, Z= 3800 mm for exposure time T=100 days and different cooling time

Dose rate at R= 175 mm, Z= 3800 mm for exposure time T=10 years and different cooling time

| Туре         | Element               | Cooling time, t |        |        |        |       |       |       |  |  |
|--------------|-----------------------|-----------------|--------|--------|--------|-------|-------|-------|--|--|
|              |                       | 1 d             | 3 d    | 5 d    | 7 d    | 15 d  | 30 d  | 100 d |  |  |
|              | ID beam pipe          | 13.70           | 7.75   | 7.06   | 6.91   | 6.82  | 6.59  | 6.18  |  |  |
|              | LAr beam pipe         | 1360.           | 1150.  | 1000.  | 894.   | 637.  | 441.  | 230.  |  |  |
|              | Pixel type 2 services | 7.76            | 6.01   | 5.55   | 5.30   | 4.71  | 4.11  | 2.84  |  |  |
|              | Pixel                 | 11.90           | 7.93   | 7.16   | 6.83   | 6.15  | 5.52  | 4.42  |  |  |
|              | SCT barrel            | 0.23            | 0.17   | 0.16   | 0.15   | 0.14  | 0.13  | 0.10  |  |  |
| Hadron       | SCT forward           | 1.00            | 0.66   | 0.60   | 0.59   | 0.55  | 0.52  | 0.43  |  |  |
| activation   | SCT barrel services   | 2.22            | 1.90   | 1.76   | 1.66   | 1.42  | 1.17  | 0.66  |  |  |
|              | SCT forward services  | 2.93            | 2.52   | 2.33   | 2.19   | 1.85  | 1.51  | 0.84  |  |  |
|              | TRT                   | 1.64            | 1.07   | 0.96   | 0.92   | 0.83  | 0.76  | 0.66  |  |  |
|              | TRT services          | 2.23            | 1.86   | 1.68   | 1.55   | 1.22  | 0.96  | 0.57  |  |  |
|              | LAr Barrel            | 15.20           | 11.80  | 9.51   | 8.06   | 5.96  | 5.60  | 5.22  |  |  |
|              | LAr EndCap            | 37.00           | 25.30  | 21.30  | 18.80  | 13.90 | 9.46  | 7.04  |  |  |
|              | ID beam pipe          | 0.26            | 0.03   | 0.01   | 0.01   | 0.01  | 0.01  | 0.00  |  |  |
|              | LAr beam pipe         | 74.7            | 73.1   | 72.2   | 71.4   | 68.9  | 64.9  | 53.3  |  |  |
|              | Pixel type 2 services | 8.14            | 2.92   | 2.52   | 2.49   | 2.46  | 2.41  | 2.24  |  |  |
|              | Pixel                 | 1.20            | 0.18   | 0.09   | 0.08   | 0.07  | 0.07  | 0.06  |  |  |
|              | SCT barrel            | 0.15            | 0.07   | 0.06   | 0.05   | 0.05  | 0.04  | 0.04  |  |  |
| Neutron      | SCT forward           | 0.63            | 0.38   | 0.32   | 0.29   | 0.25  | 0.24  | 0.20  |  |  |
| activation   | SCT barrel services   | 7.85            | 1.59   | 1.14   | 1.10   | 1.09  | 1.07  | 1.00  |  |  |
|              | SCT forward services  | 8.02            | 1.59   | 1.11   | 1.08   | 1.06  | 1.04  | 0.98  |  |  |
|              | TRT                   | 2.41            | 0.91   | 0.51   | 0.35   | 0.17  | 0.14  | 0.12  |  |  |
|              | TRT services          | 5.09            | 1.00   | 0.70   | 0.67   | 0.65  | 0.63  | 0.56  |  |  |
|              | LAr Barrel            | 15.9            | 1.88   | 1.72   | 1.69   | 1.62  | 1.41  | 1.30  |  |  |
|              | LAr EndCap            | 5.03            | 4.28   | 3.06   | 2.94   | 2.82  | 2.67  | 2.67  |  |  |
| Total, µSv/h |                       | 1585.2          | 1304.9 | 1141.5 | 1029.1 | 759.7 | 551.9 | 321.4 |  |  |

|            | Dose rate at R= 400 mm, Z= | 3800 mm f | or exposure | time T=10 | 0 days and c | lifferent coo | oling time |       |
|------------|----------------------------|-----------|-------------|-----------|--------------|---------------|------------|-------|
| Туре       | Element                    |           |             | C         | ooling time  | ,t            |            |       |
|            |                            | 1 d       | 3 d         | 5 d       | 7 d          | 15 d          | 30 d       | 100 d |
|            | ID beam pipe               | 2.91      | 0.96        | 0.72      | 0.68         | 0.62          | 0.57       | 0.48  |
|            | LAr beam pipe              | 358.      | 297.        | 256.      | 225.         | 151.          | 97.4       | 44.2  |
|            | Pixel type 2 services      | 6.15      | 4.36        | 3.89      | 3.64         | 3.06          | 2.51       | 1.42  |
|            | Pixel                      | 6.37      | 3.35        | 2.79      | 2.56         | 2.08          | 1.68       | 1.05  |
|            | SCT barrel                 | 0.15      | 0.09        | 0.08      | 0.07         | 0.06          | 0.05       | 0.03  |
| Hadron     | SCT forward                | 0.64      | 0.30        | 0.25      | 0.24         | 0.21          | 0.18       | 0.12  |
| activation | SCT barrel services        | 1.94      | 1.62        | 1.48      | 1.38         | 1.15          | 0.92       | 0.47  |
|            | SCT forward services       | 2.54      | 2.13        | 1.94      | 1.81         | 1.49          | 1.18       | 0.59  |
|            | TRT                        | 1.12      | 0.54        | 0.43      | 0.39         | 0.31          | 0.25       | 0.17  |
|            | TRT services               | 1.99      | 1.61        | 1.43      | 1.29         | 0.97          | 0.72       | 0.37  |
|            | LAr Barrel                 | 11.5      | 7.32        | 5.70      | 4.78         | 2.85          | 1.66       | 1.42  |
|            | LAr EndCap                 | 27.0      | 16.4        | 13.5      | 11.7         | 8.20          | 5.66       | 2.61  |
|            | ID beam pipe               | 0.08      | 0.01        | 0.00      | 0.00         | 0.00          | 0.00       | 0.00  |
|            | LAr beam pipe              | 9.27      | 8.91        | 8.70      | 8.52         | 7.89          | 6.94       | 4.16  |
|            | Pixel type 2 services      | 6.50      | 1.03        | 0.62      | 0.59         | 0.57          | 0.53       | 0.42  |
|            | Pixel                      | 0.87      | 0.11        | 0.04      | 0.03         | 0.03          | 0.02       | 0.02  |
|            | SCT barrel                 | 0.12      | 0.05        | 0.04      | 0.03         | 0.02          | 0.02       | 0.02  |
| Neutron    | SCT forward                | 0.49      | 0.25        | 0.19      | 0.17         | 0.13          | 0.12       | 0.10  |
| activation | SCT barrel services        | 7.07      | 0.74        | 0.28      | 0.24         | 0.23          | 0.22       | 0.18  |
|            | SCT forward services       | 7.23      | 0.75        | 0.27      | 0.24         | 0.23          | 0.21       | 0.17  |
|            | TRT                        | 2.33      | 0.83        | 0.44      | 0.27         | 0.10          | 0.07       | 0.06  |
|            | TRT services               | 4.74      | 0.53        | 0.23      | 0.20         | 0.18          | 0.16       | 0.11  |
|            | LAr Barrel                 | 12.6      | 0.87        | 0.61      | 0.58         | 0.53          | 0.42       | 0.33  |
|            | LAr EndCap                 | 3.64      | 0.81        | 0.54      | 0.44         | 0.42          | 0.41       | 0.40  |

58.9

121.9

Dose rate at R= 400 mm, Z= 3800 mm for exposure time T=10 years and different cooling time

300.2

264.8

182.3

350.6

475.3

Total, µSv/h

| Туре       | Element               |       |       | С     | ooling time | ,t    |       |       |
|------------|-----------------------|-------|-------|-------|-------------|-------|-------|-------|
|            |                       | 1 d   | 3 d   | 5 d   | 7 d         | 15 d  | 30 d  | 100 d |
|            | ID beam pipe          | 4.69  | 2.68  | 2.44  | 2.39        | 2.36  | 2.27  | 2.11  |
|            | LAr beam pipe         | 391.  | 329.  | 288.  | 257.        | 183.  | 127.  | 66.5  |
|            | Pixel type 2 services | 8.01  | 6.21  | 5.73  | 5.47        | 4.86  | 4.25  | 2.93  |
|            | Pixel                 | 8.92  | 5.90  | 5.33  | 5.09        | 4.59  | 4.14  | 3.33  |
|            | SCT barrel            | 0.23  | 0.17  | 0.15  | 0.15        | 0.14  | 0.12  | 0.10  |
| Hadron     | SCT forward           | 0.97  | 0.63  | 0.58  | 0.57        | 0.53  | 0.50  | 0.42  |
| activation | SCT barrel services   | 2.25  | 1.92  | 1.78  | 1.68        | 1.44  | 1.19  | 0.67  |
|            | SCT forward services  | 2.93  | 2.52  | 2.32  | 2.19        | 1.85  | 1.52  | 0.84  |
|            | TRT                   | 1.66  | 1.08  | 0.97  | 0.93        | 0.84  | 0.77  | 0.67  |
|            | TRT services          | 2.30  | 1.92  | 1.73  | 1.59        | 1.26  | 0.99  | 0.58  |
|            | LAr Barrel            | 14.2  | 10.7  | 8.61  | 7.30        | 4.76  | 4.62  | 4.40  |
|            | LAr EndCap            | 32.1  | 23.2  | 19.4  | 17.2        | 12.7  | 8.29  | 6.22  |
|            | ID beam pipe          | 0.08  | 0.01  | 0.00  | 0.00        | 0.00  | 0.00  | 0.00  |
|            | LAr beam pipe         | 18.5  | 18.1  | 17.8  | 17.6        | 16.9  | 15.8  | 12.4  |
|            | Pixel type 2 services | 8.53  | 3.05  | 2.64  | 2.60        | 2.57  | 2.52  | 2.35  |
|            | Pixel                 | 0.91  | 0.14  | 0.08  | 0.07        | 0.06  | 0.06  | 0.05  |
|            | SCT barrel            | 0.14  | 0.07  | 0.06  | 0.05        | 0.05  | 0.04  | 0.04  |
| Neutron    | SCT forward           | 0.61  | 0.36  | 0.31  | 0.28        | 0.25  | 0.23  | 0.19  |
| activation | SCT barrel services   | 7.95  | 1.61  | 1.15  | 1.11        | 1.10  | 1.08  | 1.01  |
|            | SCT forward services  | 8.08  | 1.60  | 1.12  | 1.09        | 1.07  | 1.05  | 0.99  |
|            | TRT                   | 2.40  | 0.90  | 0.51  | 0.35        | 0.17  | 0.14  | 0.12  |
|            | TRT services          | 5.23  | 1.03  | 0.72  | 0.69        | 0.67  | 0.65  | 0.58  |
|            | LAr Barrel            | 13.20 | 1.90  | 1.74  | 1.71        | 1.64  | 1.44  | 1.33  |
|            | LAr EndCap            | 4.51  | 3.56  | 2.49  | 2.45        | 2.37  | 2.06  | 2.01  |
|            | Total, µSv/h          | 539.4 | 418.3 | 365.7 | 329.6       | 245.2 | 180.7 | 109.8 |

| Туре       | Element               |       |       | С     | ooling time | , t  |      |       |
|------------|-----------------------|-------|-------|-------|-------------|------|------|-------|
|            |                       | 1 d   | 3 d   | 5 d   | 7 d         | 15 d | 30 d | 100 d |
|            | ID beam pipe          | 1.13  | 0.39  | 0.30  | 0.29        | 0.26 | 0.24 | 0.19  |
|            | LAr beam pipe         | 172.  | 142.  | 123.  | 108.        | 72.7 | 47.0 | 21.5  |
|            | Pixel type 2 services | 5.21  | 3.70  | 3.31  | 3.09        | 2.61 | 2.14 | 1.21  |
|            | Pixel                 | 3.96  | 2.05  | 1.70  | 1.56        | 1.27 | 1.03 | 0.65  |
|            | SCT barrel            | 0.15  | 0.09  | 0.07  | 0.07        | 0.06 | 0.05 | 0.03  |
| Hadron     | SCT forward           | 0.58  | 0.28  | 0.23  | 0.22        | 0.19 | 0.16 | 0.11  |
| activation | SCT barrel services   | 1.99  | 1.66  | 1.52  | 1.42        | 1.18 | 0.95 | 0.48  |
|            | SCT forward services  | 2.52  | 2.12  | 1.93  | 1.80        | 1.48 | 1.17 | 0.59  |
|            | TRT                   | 1.12  | 0.54  | 0.43  | 0.39        | 0.31 | 0.25 | 0.18  |
|            | TRT services          | 2.14  | 1.73  | 1.53  | 1.39        | 1.04 | 0.77 | 0.39  |
|            | LAr Barrel            | 10.5  | 6.69  | 5.21  | 4.37        | 2.61 | 1.67 | 1.43  |
|            | LAr EndCap            | 21.8  | 12.9  | 10.6  | 9.21        | 6.44 | 4.33 | 2.00  |
|            | ID beam pipe          | 0.03  | 0.00  | 0.00  | 0.00        | 0.00 | 0.00 | 0.00  |
|            | LAr beam pipe         | 4.78  | 4.62  | 4.52  | 4.43        | 4.10 | 3.60 | 2.10  |
|            | Pixel type 2 services | 6.05  | 0.96  | 0.57  | 0.54        | 0.52 | 0.49 | 0.39  |
|            | Pixel                 | 0.51  | 0.07  | 0.03  | 0.03        | 0.02 | 0.02 | 0.01  |
|            | SCT barrel            | 0.12  | 0.05  | 0.04  | 0.03        | 0.02 | 0.02 | 0.02  |
| Neutron    | SCT forward           | 0.45  | 0.23  | 0.18  | 0.15        | 0.12 | 0.11 | 0.09  |
| activation | SCT barrel services   | 7.25  | 0.76  | 0.28  | 0.25        | 0.24 | 0.22 | 0.18  |
|            | SCT forward services  | 7.33  | 0.76  | 0.28  | 0.24        | 0.23 | 0.22 | 0.17  |
|            | TRT                   | 2.25  | 0.79  | 0.42  | 0.26        | 0.10 | 0.07 | 0.06  |
|            | TRT services          | 5.09  | 0.57  | 0.24  | 0.21        | 0.20 | 0.18 | 0.12  |
|            | LAr Barrel            | 10.9  | 0.69  | 0.48  | 0.46        | 0.42 | 0.40 | 0.31  |
|            | LAr EndCap            | 2.33  | 0.78  | 0.52  | 0.39        | 0.38 | 0.37 | 0.35  |
|            | Total, µSv/h          | 270.2 | 184.4 | 157.4 | 138.8       | 96.5 | 65.5 | 32.6  |

Dose rate at R= 700 mm, Z= 3800 mm for exposure time T=100 days and different cooling time

Dose rate at R= 700 mm, Z= 3800 mm for exposure time T=10 years and different cooling time

| Туре       | Element               |       |       | С     | ooling time | ,t    |       |       |
|------------|-----------------------|-------|-------|-------|-------------|-------|-------|-------|
|            |                       | 1 d   | 3 d   | 5 d   | 7 d         | 15 d  | 30 d  | 100 d |
|            | ID beam pipe          | 1.81  | 1.05  | 0.96  | 0.94        | 0.92  | 0.89  | 0.81  |
|            | LAr beam pipe         | 188.  | 158.  | 138.  | 123.        | 88.1  | 61.3  | 32.3  |
|            | Pixel type 2 services | 6.79  | 5.27  | 4.86  | 4.64        | 4.13  | 3.61  | 2.49  |
|            | Pixel                 | 5.58  | 3.66  | 3.31  | 3.16        | 2.86  | 2.59  | 2.10  |
|            | SCT barrel            | 0.22  | 0.16  | 0.15  | 0.14        | 0.13  | 0.12  | 0.10  |
| Hadron     | SCT forward           | 0.88  | 0.58  | 0.53  | 0.52        | 0.49  | 0.45  | 0.38  |
| activation | SCT barrel services   | 2.31  | 1.98  | 1.83  | 1.73        | 1.48  | 1.22  | 0.69  |
|            | SCT forward services  | 2.91  | 2.50  | 2.31  | 2.18        | 1.84  | 1.51  | 0.84  |
|            | TRT                   | 1.67  | 1.09  | 0.98  | 0.94        | 0.85  | 0.79  | 0.68  |
|            | TRT services          | 2.47  | 2.06  | 1.86  | 1.71        | 1.35  | 1.06  | 0.63  |
|            | LAr Barrel            | 14.2  | 10.6  | 8.61  | 7.30        | 4.74  | 4.51  | 4.39  |
|            | LAr EndCap            | 26.1  | 18.0  | 15.1  | 13.4        | 9.91  | 7.77  | 5.83  |
|            | ID beam pipe          | 0.03  | 0.00  | 0.00  | 0.00        | 0.00  | 0.00  | 0.00  |
|            | LAr beam pipe         | 8.48  | 8.30  | 8.18  | 8.08        | 7.70  | 7.11  | 5.30  |
|            | Pixel type 2 services | 7.94  | 2.84  | 2.46  | 2.43        | 2.40  | 2.35  | 2.19  |
|            | Pixel                 | 0.54  | 0.10  | 0.06  | 0.05        | 0.05  | 0.05  | 0.04  |
|            | SCT barrel            | 0.14  | 0.07  | 0.06  | 0.05        | 0.05  | 0.04  | 0.04  |
| Neutron    | SCT forward           | 0.56  | 0.33  | 0.28  | 0.26        | 0.23  | 0.21  | 0.18  |
| activation | SCT barrel services   | 8.14  | 1.65  | 1.18  | 1.14        | 1.12  | 1.10  | 1.03  |
|            | SCT forward services  | 8.20  | 1.62  | 1.14  | 1.10        | 1.09  | 1.07  | 1.00  |
|            | TRT                   | 2.32  | 0.86  | 0.49  | 0.33        | 0.17  | 0.14  | 0.11  |
|            | TRT services          | 5.62  | 1.10  | 0.77  | 0.74        | 0.72  | 0.69  | 0.62  |
|            | LAr Barrel            | 12.3  | 1.71  | 1.57  | 1.54        | 1.48  | 1.42  | 1.31  |
|            | LAr EndCap            | 3.90  | 3.01  | 2.11  | 2.08        | 2.01  | 1.93  | 1.88  |
|            | Total, µSv/h          | 311.1 | 226.6 | 196.8 | 177.5       | 133.8 | 101.9 | 64.9  |

|                                                       | Result              | ts of the cu | rrent study | <u>y</u> |         |         |  |  |  |  |  |  |
|-------------------------------------------------------|---------------------|--------------|-------------|----------|---------|---------|--|--|--|--|--|--|
| Distance from Barrel front                            |                     | T= 180 d     |             |          | T= 10 y |         |  |  |  |  |  |  |
| surface Z <sub>0</sub> , cm                           | t= 1 d              | t= 7 d       | t= 30 d     | t= 1 d   | t= 7 d  | t= 30 d |  |  |  |  |  |  |
| 10                                                    | 4.64                | 2.25         | 1.67        | 6.57     | 4.16    | 3.55    |  |  |  |  |  |  |
| 30                                                    | 2.98                | 1.45         | 1.08        | 4.24     | 2.69    | 2.28    |  |  |  |  |  |  |
| 30 2.50 1.10 1.21 2.05   100 0.96 0.46 0.34 1.35 0.86 |                     |              |             |          |         |         |  |  |  |  |  |  |
| ]                                                     | Results of <b>1</b> | the study b  | y C.Buttar  | • et al. |         |         |  |  |  |  |  |  |
| Distance from Barrel front                            |                     | T= 180 d     |             |          | T= 10 y |         |  |  |  |  |  |  |
| surface Z <sub>0</sub> , cm                           | t= 1 d              | t= 7 d       | t= 30 d     | t= 1 d   | t= 7 d  | t= 30 d |  |  |  |  |  |  |
| 10                                                    | 7.15                | 2.78         | 2.28        | 9.77     | 5.37    | 4.79    |  |  |  |  |  |  |
| 30                                                    | 4.59                | 1.78         | 1.46        | 6.27     | 3.45    | 3.07    |  |  |  |  |  |  |
| 100                                                   | 1.44                | 0.56         | 0.46        | 1.96     | 1.08    | 0.96    |  |  |  |  |  |  |

Gamma dose rate ( $\mu$ Sv/h) along Z axis.

|                                                                             | Result                                                | ts of the cu                                      | rrent study                           | y                                |                                   |                         |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------|---------------------------------------|----------------------------------|-----------------------------------|-------------------------|--|--|--|--|--|--|--|--|
| Distance from Barrel                                                        |                                                       | T= 180 d                                          |                                       |                                  | T= 10 y                           |                         |  |  |  |  |  |  |  |  |
| cylindrical surface R <sub>0</sub> , cm                                     | t= 1 d                                                | t= 7 d                                            | t= 30 d                               | t= 1 d                           | t= 7 d                            | t= 30 d                 |  |  |  |  |  |  |  |  |
| 10                                                                          | 7.09                                                  | 3.43                                              | 2.56                                  | 10.04                            | 6.36                              | 5.41                    |  |  |  |  |  |  |  |  |
| 30                                                                          | 3.97                                                  | 1.92                                              | 1.44                                  | 5.63                             | 3.57                              | 3.04                    |  |  |  |  |  |  |  |  |
| 100                                                                         | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                                                   |                                       |                                  |                                   |                         |  |  |  |  |  |  |  |  |
| 100 1.19 0.57 0.43 1.67 1.06 0.91   Results of the study by C.Buttar et al. |                                                       |                                                   |                                       |                                  |                                   |                         |  |  |  |  |  |  |  |  |
| ]                                                                           | Results of t                                          | the study b                                       | y C.Buttar                            | · et al.                         |                                   |                         |  |  |  |  |  |  |  |  |
| ]<br>Distance from Barrel                                                   | Results of t                                          | <b>the study b</b><br>T= 180 d                    | y C.Buttar                            | et al.                           | T= 10 y                           |                         |  |  |  |  |  |  |  |  |
| Distance from Barrel<br>cylindrical surface R <sub>0</sub> , cm             | <b>Results of t</b><br>t= 1 d                         | <b>the study b</b><br>T= 180 d<br>t= 7 d          | <b>y C.Buttar</b><br>t= 30 d          | <b>et al.</b><br>t= 1 d          | T= 10 y<br>t= 7 d                 | t= 30 d                 |  |  |  |  |  |  |  |  |
| Distance from Barrel<br>cylindrical surface R <sub>0</sub> , cm<br>10       | <b>Results of t</b><br>t= 1 d<br>10.53                | <b>the study b</b><br>T= 180 d<br>t= 7 d<br>4.09  | <b>y C.Buttar</b><br>t= 30 d<br>3.36  | <b>et al.</b><br>t= 1 d<br>14.39 | T= 10 y<br>t= 7 d<br>7.91         | t= 30 d<br>7.06         |  |  |  |  |  |  |  |  |
| Distance from Barrel<br>cylindrical surface $R_0$ , cm<br>10<br>30          | <b>Results of 1</b><br>t= 1 d<br>10.53<br>5.85        | the study b<br>T= 180 d<br>t= 7 d<br>4.09<br>2.28 | y C.Buttar<br>t= 30 d<br>3.36<br>1.87 | et al.<br>t= 1 d<br>14.39<br>8   | T= 10 y<br>t= 7 d<br>7.91<br>4.39 | t= 30 d<br>7.06<br>3.92 |  |  |  |  |  |  |  |  |

## Addendum 1



Fig. A1.1 General detector opening layout to calculations of access dose rate.

## Table 1 (continuation)

|          |       |       |       |        |        |        |        |        |        |        |        | -      |        |        |        |        |
|----------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
|          |       | 340   | 340-  | 350-   | 365-   | 380-   | 405-   | 430-   | 480-   | 530-   | 580-   | 605-   | 630-   | 645-   | 660-   | 670    |
| R/Z,     |       |       | 350   | 365    | 380    | 405    | 430    | 480    | 530    | 580    | 605    | 630    | 645    | 660    | 670    |        |
| cm       | dR\dZ | 0     | 10    | 15     | 15     | 25     | 25     | 50     | 50     | 50     | 25     | 25     | 15     | 15     | 10     | 0      |
| 0-5      | 5     | -     | -     | -      | -      | -      | -      | -      | -      | -      | -      | -      | -      | -      | -      | -      |
| 5- 10    | 5     | 620.4 | 680.3 | 1447.5 | 5172.8 | 3017.9 | 2051.2 | 2700.9 | 4250.9 | 3852.4 | 3431.2 | 3264.5 | 3220.6 | 3268.7 | 3289   | 1955.3 |
| 10- 20   | 10    | 551.2 | 587.4 | 902.6  | 1637.8 | 1418.1 | 1103.3 | 1352   | 1939.4 | 1845.4 | 1695.7 | 1648.3 | 1663.6 | 1718.1 | 1775.6 | 1164.8 |
| 20- 30   | 10    | 456.3 | 479.9 | 605.1  | 796.7  | 799.2  | 718    | 836.3  | 1101.6 | 1095.1 | 1040.9 | 1035.5 | 1064.7 | 1108.7 | 1175.3 | 837.1  |
| 30- 45   | 15    | 394.7 | 406   | 433.6  | 492.6  | 514.3  | 506.6  | 570.3  | 702.5  | 720.6  | 706.6  | 715.3  | 743.4  | 784.4  | 837.6  | 617.9  |
| 45- 60   | 15    | 347.8 | 352.5 | 333.2  | 349.6  | 364.2  | 374.8  | 412.7  | 483.7  | 507.1  | 512.5  | 522.3  | 543.7  | 569.7  | 602.4  | 445.8  |
| 60- 75   | 15    | 289.6 | 291.5 | 274.8  | 278    | 286.4  | 297    | 323    | 366.6  | 388.4  | 396.7  | 404.6  | 417    | 428.1  | 440.9  | 316.4  |
| 75-95    | 20    | 247.9 | 246.7 | 231.8  | 229.1  | 231    | 239.2  | 257    | 283.4  | 300.7  | 309.3  | 310.3  | 314.1  | 316    | 313.8  | 214.6  |
| 95- 115  | 20    | 239   | 228.9 | 202.2  | 192.6  | 190.9  | 195.4  | 206.7  | 222.3  | 235.9  | 238.4  | 236.2  | 233    | 231    | 223.9  | 145.1  |
| 115- 125 | 10    | 223.8 | 215.3 | 183.2  | 172    | 168.9  | 171.6  | 178.8  | 190.1  | 199.7  | 199.7  | 195.6  | 189.1  | 187.3  | 179.1  | 112    |
| 125- 150 | 25    | 177.4 | 171.8 | 157.9  | 151.3  | 148.5  | 149.4  | 153.9  | 161.9  | 166.1  | 166    | 157.8  | 152.2  | 150.2  | 142.7  | 86.4   |
| 150- 175 | 25    | 138.5 | 135.6 | 128.2  | 125.4  | 123.8  | 123.4  | 126.2  | 131    | 132    | 129    | 119.2  | 115.4  | 113.4  | 107    | 62.2   |
| 175-200  | 25    | 110.1 | 108.6 | 105.3  | 104.1  | 103.2  | 103.1  | 105.1  | 107.8  | 106.5  | 102.5  | 92.5   | 90.7   | 88.1   | 82.3   | 45.2   |
| 200-225  | 25    | 89.9  | 88.3  | 86.5   | 86     | 85.4   | 86     | 89.4   | 89.5   | 87.2   | 82.5   | 73.9   | 73.5   | 69.9   | 65.1   | 34.2   |

Equivalent dose rate in the ID access scenario for T= 100d, t=1d

Table A1.1

|          |       |       | L     | quivalei |        |        | e genera | a access | Social |        | 100 u, t | - 5 0  | 1      |        | -      |       |
|----------|-------|-------|-------|----------|--------|--------|----------|----------|--------|--------|----------|--------|--------|--------|--------|-------|
|          |       | 340   | 340-  | 350-     | 365-   | 380-   | 405-     | 430-     | 480-   | 530-   | 580-     | 605-   | 630-   | 645-   | 660-   | 670   |
| R/Z,     |       |       | 350   | 365      | 380    | 405    | 430      | 480      | 530    | 580    | 605      | 630    | 645    | 660    | 670    |       |
| cm       | dR\dZ | 0     | 10    | 15       | 15     | 25     | 25       | 50       | 50     | 50     | 25       | 25     | 15     | 15     | 10     | 0     |
| 0-5      | 5     |       |       |          |        |        |          |          |        |        |          |        |        |        |        |       |
| 5- 10    | 5     | 362.9 | 407.5 | 948.8    | 3661.8 | 2134.7 | 1442.3   | 1913.6   | 3040.9 | 2754   | 2435.9   | 2293.7 | 2233.9 | 2233.8 | 2213.9 | 1236  |
| 10- 20   | 10    | 316.1 | 350.3 | 585      | 1125.8 | 981.1  | 761.2    | 944.2    | 1373.6 | 1299.3 | 1179.1   | 1127.3 | 1112.3 | 1118   | 1123.9 | 670.7 |
| 20- 30   | 10    | 258.8 | 280.5 | 380.3    | 527.2  | 536.9  | 484.5    | 574.1    | 768.1  | 758    | 707.3    | 687.6  | 685.3  | 691.4  | 700.5  | 439.5 |
| 30-45    | 15    | 215.3 | 226.6 | 260.6    | 310.7  | 333.2  | 333.3    | 383.9    | 480.9  | 488.7  | 468.4    | 461.8  | 464.5  | 473.4  | 485.8  | 317.8 |
| 45-60    | 15    | 180.3 | 186.1 | 190      | 209.6  | 227.1  | 239.8    | 271.5    | 323.9  | 335.9  | 331.6    | 329.6  | 333.7  | 339.8  | 348.5  | 231.8 |
| 60- 75   | 15    | 145.5 | 148.6 | 150.4    | 160    | 173    | 185.2    | 208.1    | 240.4  | 252.2  | 252      | 252.4  | 254    | 256.1  | 258.6  | 168.8 |
| 75-95    | 20    | 119.9 | 121.3 | 121.6    | 127.1  | 134.8  | 145.3    | 161.7    | 182.2  | 191.5  | 194.2    | 192.2  | 191.5  | 190.7  | 187.8  | 117.9 |
| 95- 115  | 20    | 107.2 | 106.2 | 102.2    | 103.5  | 108.3  | 116.1    | 126.8    | 139.6  | 148    | 147.8    | 146.1  | 143.1  | 140.7  | 136.8  | 82.4  |
| 115- 125 | 10    | 98.4  | 96.9  | 90.9     | 91     | 94.4   | 99.7     | 108.1    | 118.2  | 124.4  | 123.4    | 121.2  | 117    | 115.1  | 110.9  | 64.6  |
| 125- 150 | 25    | 81.3  | 80.6  | 79.1     | 79.4   | 81.6   | 85.6     | 91.5     | 99.2   | 102.5  | 102.6    | 98.1   | 95.1   | 92.9   | 89.3   | 50.8  |
| 150- 175 | 25    | 66.7  | 66.1  | 65.7     | 66.2   | 67.6   | 70       | 74.6     | 79     | 80.5   | 79.3     | 74.8   | 72.7   | 70.9   | 68     | 37.7  |
| 175-200  | 25    | 55.9  | 55.2  | 55.4     | 56     | 56.9   | 58.4     | 61.4     | 64.2   | 64.5   | 62.6     | 58.7   | 57.1   | 55.6   | 53.4   | 28.4  |
| 200-225  | 25    | 47.3  | 46.7  | 47.1     | 47.6   | 47.7   | 48.8     | 51.5     | 53.1   | 52.7   | 50.7     | 47.1   | 46.4   | 44.6   | 43     | 22.1  |

Equivalent dose rate in the general access scenario for T= 100 d, t= 5 d

Table A1.1 (continuation)

|          |       | 340  | 340- | 350-  | 365-  | 380-  | 405-  | 430-  | 480-  | 530-  | 580-  | 605-  | 630-  | 645-  | 660-  | 670   |
|----------|-------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| R/7      |       | 540  | 350  | 365   | 380   | 405   | 430   | 480   | 530   | 580   | 605   | 630   | 645   | 660   | 670   | 070   |
| cm       | dR\dZ | 0    | 10   | 15    | 15    | 25    | 25    | 50    | 50    | 50    | 25    | 25    | 15    | 15    | 10    | 0     |
| 0- 5     | 5     |      |      |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 5- 10    | 5     | 78.9 | 86.3 | 184.3 | 680.1 | 387.4 | 260.2 | 361.1 | 604.2 | 539.9 | 467.2 | 436.4 | 426.4 | 429.7 | 431.2 | 253.5 |
| 10- 20   | 10    | 69.5 | 73.6 | 113.8 | 211   | 181.2 | 140.3 | 179.9 | 272.2 | 254.9 | 227.5 | 217.3 | 215.8 | 221.3 | 229.5 | 148.6 |
| 20- 30   | 10    | 56.3 | 59.3 | 75.6  | 101   | 101.4 | 91.3  | 110.5 | 152.1 | 148.9 | 136.8 | 133.2 | 134.2 | 138.4 | 146.3 | 101.2 |
| 30- 45   | 15    | 48.7 | 50.1 | 53.3  | 61.4  | 64.5  | 64.1  | 74.7  | 94.9  | 95.8  | 90.7  | 89.3  | 90.5  | 93.5  | 98    | 67.5  |
| 45- 60   | 15    | 42.8 | 43.5 | 40.5  | 42.7  | 45.2  | 47.1  | 53.3  | 63.6  | 65.4  | 63.7  | 63.6  | 64.4  | 65.9  | 67.7  | 45.6  |
| 60- 75   | 15    | 34.3 | 34.8 | 32.5  | 33.3  | 35.1  | 36.5  | 41    | 46.8  | 49    | 48.6  | 48.3  | 48.7  | 49.2  | 49.5  | 32.3  |
| 75-95    | 20    | 28.2 | 28.5 | 26.6  | 26.7  | 27.7  | 29    | 32.1  | 35.7  | 37.2  | 37.1  | 36.9  | 36.5  | 36.5  | 36    | 22.4  |
| 95-115   | 20    | 25.5 | 24.9 | 22.9  | 21.9  | 22.5  | 23.3  | 25.3  | 27.7  | 28.6  | 28.5  | 28    | 27.3  | 27.3  | 26.4  | 15.5  |
| 115- 125 | 10    | 23.8 | 23   | 20.4  | 19.6  | 19.5  | 20.4  | 21.7  | 23.5  | 24    | 23.8  | 23.2  | 22.5  | 22.3  | 21.4  | 12.3  |
| 125- 150 | 25    | 19.5 | 18.7 | 17.6  | 17.3  | 17.1  | 17.8  | 18.5  | 19.5  | 19.7  | 19.6  | 19    | 18.3  | 18.3  | 17.4  | 9.7   |
| 150- 175 | 25    | 15.5 | 15.1 | 14.5  | 14.4  | 14.2  | 14.6  | 15.1  | 15.5  | 15.6  | 15.4  | 14.5  | 14.2  | 14.1  | 13.3  | 7.1   |
| 175-200  | 25    | 12.9 | 12.7 | 12    | 11.9  | 12    | 11.9  | 12.6  | 12.8  | 12.6  | 12.3  | 11.4  | 11.4  | 11.1  | 10.6  | 5.4   |
| 200-225  | 25    | 10.7 | 10.3 | 10.2  | 10    | 10    | 10.3  | 10.7  | 10.4  | 10.4  | 10    | 9.3   | 9.4   | 9     | 8.5   | 4.1   |

Equivalent dose rate in the general access scenario for T= 100 d, t=100d

Table 1 (continuation)

Equivalent dose rate in the ID access scenario for T= 10y, t=1d

|          |       | 340   | 340-  | 350-   | 365-   | 380-   | 405-   | 430-   | 480-   | 530-   | 580-   | 605-   | 630-   | 645-   | 660-   | 670    |
|----------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| R/Z,     |       |       | 350   | 365    | 380    | 405    | 430    | 480    | 530    | 580    | 605    | 630    | 645    | 660    | 670    |        |
| cm       | dR\dZ | 0     | 10    | 15     | 15     | 25     | 25     | 50     | 50     | 50     | 25     | 25     | 15     | 15     | 10     | 0      |
| 0- 5     | 5     | -     | -     | -      | -      | -      | -      | -      | -      | -      | -      | -      | -      | -      | -      | I      |
| 5- 10    | 5     | 729.2 | 797.2 | 1662.4 | 5873.5 | 3376.9 | 2287.1 | 3002.2 | 4701.9 | 4261.1 | 3806   | 3633.6 | 3598.6 | 3673.2 | 3718.5 | 2254.4 |
| 10- 20   | 10    | 650.1 | 685   | 1033.7 | 1855.9 | 1595.2 | 1235.4 | 1506.4 | 2155.8 | 2049.5 | 1894.1 | 1852.4 | 1883   | 1961.7 | 2055.2 | 1390.5 |
| 20- 30   | 10    | 534.2 | 557.8 | 694.7  | 906.7  | 902.9  | 807.8  | 935.5  | 1227.6 | 1222.8 | 1171   | 1175.1 | 1219.1 | 1286.4 | 1391   | 1033.1 |
| 30- 45   | 15    | 462.6 | 474.5 | 499.7  | 562.7  | 583.8  | 572.2  | 641    | 786.8  | 810    | 801.3  | 818.5  | 859.1  | 916.1  | 993.1  | 758.1  |
| 45- 60   | 15    | 410.9 | 415.3 | 386.1  | 400.6  | 415.3  | 425.6  | 466    | 544.7  | 573    | 584.1  | 601.3  | 632.1  | 667.5  | 709.7  | 538.8  |
| 60- 75   | 15    | 341   | 342.3 | 319.1  | 319.6  | 327.9  | 337.7  | 365.9  | 414.2  | 441.6  | 455.2  | 466.5  | 484.5  | 502    | 516.9  | 378    |
| 75-95    | 20    | 290.3 | 289   | 269.1  | 263.9  | 265.9  | 273.1  | 292.6  | 322.1  | 343.9  | 355.6  | 359    | 364.6  | 369.3  | 368.2  | 258.2  |
| 95-115   | 20    | 278.3 | 266.7 | 234.5  | 222.3  | 219.6  | 224.6  | 236.5  | 254    | 270.2  | 275.4  | 273.3  | 269.8  | 269.2  | 261.4  | 173.3  |
| 115- 125 | 10    | 261.4 | 250.6 | 212.5  | 199.2  | 195.2  | 197.2  | 205.5  | 217.8  | 229.2  | 230.8  | 225.7  | 218.9  | 218    | 208.4  | 133.2  |
| 125- 150 | 25    | 208.4 | 201.1 | 183.7  | 175.8  | 172.4  | 172.5  | 177    | 185.6  | 191.7  | 191.8  | 182    | 175.6  | 174.5  | 164.9  | 102.2  |
| 150-175  | 25    | 163.2 | 159.3 | 150.5  | 146.8  | 144.2  | 143    | 145.2  | 150.7  | 152.1  | 149.6  | 136.8  | 133    | 131.2  | 122.5  | 72.6   |
| 175-200  | 25    | 131.4 | 128.4 | 124.3  | 122.4  | 120.4  | 119.3  | 121.5  | 124.5  | 122.9  | 118.2  | 105.7  | 104.5  | 101    | 93.4   | 52.5   |
| 200-225  | 25    | 107.1 | 104.6 | 102.3  | 100.9  | 99.6   | 100    | 103.5  | 103.5  | 100.7  | 94.7   | 84.4   | 84.4   | 79.2   | 73.3   | 39.3   |

Table A1.1 (continuation)

|          |       | 340   | 340-  | 350-   | 365-  | 380-   | 405-   | 430-   | 480-   | 530-   | 580-   | 605-   | 630-   | 645-   | 660-   | 670    |
|----------|-------|-------|-------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| R/Z,     |       |       | 350   | 365    | 380   | 405    | 430    | 480    | 530    | 580    | 605    | 630    | 645    | 660    | 670    |        |
| cm       | dR\dZ | 0     | 10    | 15     | 15    | 25     | 25     | 50     | 50     | 50     | 25     | 25     | 15     | 15     | 10     | 0      |
| 0- 5     | 5     |       |       |        |       |        |        |        |        |        |        |        |        |        |        |        |
| 5- 10    | 5     | 470.3 | 522.4 | 1163.1 | 4347  | 2485.3 | 1673.6 | 2207.2 | 3489.5 | 3152.5 | 2792.8 | 2646.3 | 2598   | 2624.9 | 2628.2 | 1529.4 |
| 10-20    | 10    | 414.5 | 446.3 | 714    | 1341  | 1155.8 | 890.3  | 1095.1 | 1582.4 | 1500   | 1369.2 | 1324.6 | 1326.2 | 1358.8 | 1397.9 | 895    |
| 20- 30   | 10    | 336.3 | 357.4 | 468    | 634.3 | 639    | 572.6  | 671.5  | 892.7  | 883.4  | 833    | 822.6  | 837.2  | 865.8  | 912    | 631.9  |
| 30- 45   | 15    | 282.7 | 294.4 | 325.2  | 379.5 | 401.3  | 397.6  | 453.3  | 564.1  | 576.2  | 559.9  | 561.7  | 578.3  | 604.3  | 638.6  | 453.3  |
| 45- 60   | 15    | 243   | 247.9 | 242    | 260.2 | 276.9  | 289.5  | 324.1  | 384    | 401    | 401.6  | 406.9  | 419.2  | 436.2  | 455.1  | 327.2  |
| 60- 75   | 15    | 196.1 | 199   | 194    | 201.5 | 213.3  | 225.7  | 250.4  | 287.4  | 304.4  | 309.2  | 313.7  | 320.5  | 327.9  | 334.7  | 231.4  |
| 75-95    | 20    | 162.2 | 163.3 | 158.3  | 161.6 | 168.6  | 178.5  | 196.6  | 220    | 234    | 239.5  | 240.4  | 241.6  | 242.9  | 241.1  | 160.5  |
| 95- 115  | 20    | 146.2 | 143.5 | 134.1  | 132.9 | 136.7  | 144.2  | 156    | 171.2  | 181.9  | 184.5  | 182.9  | 179.8  | 178.9  | 173.6  | 110.2  |
| 115- 125 | 10    | 135.2 | 132.1 | 120.5  | 117.8 | 120.5  | 125.2  | 134.2  | 145.2  | 153.5  | 154.1  | 151.3  | 146.3  | 145.2  | 139.3  | 85.6   |
| 125- 150 | 25    | 112.2 | 109.8 | 104.7  | 103.7 | 104.9  | 108.3  | 114.4  | 122.3  | 127.3  | 128    | 121.9  | 118.2  | 116.9  | 111.5  | 66.4   |
| 150- 175 | 25    | 91.8  | 90    | 87.7   | 87    | 87.5   | 89.5   | 93.2   | 98.8   | 100.2  | 99.4   | 92.3   | 90     | 88.5   | 84     | 48     |
| 175-200  | 25    | 76.2  | 74.7  | 74.3   | 74    | 73.9   | 74.6   | 77.6   | 80.8   | 80.5   | 78.6   | 71.7   | 70.8   | 68.8   | 64.6   | 35.5   |
| 200-225  | 25    | 64.6  | 63.1  | 62.4   | 62.4  | 61.9   | 62.8   | 65.5   | 66.8   | 66.3   | 62.8   | 57.4   | 57.3   | 54.3   | 50.8   | 26.8   |

Equivalent dose rate in the general access scenario for T= 10y, t= 5 d

Table A1.1 (continuation)

|          |       | 340   | 340-  | 350-  | 365-   | 380-  | 405-  | 430-  | 480-  | 530-  | 580-  | 605-  | 630-  | 645-  | 660-  | 670   |
|----------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| R/Z,     |       | 0.0   | 350   | 365   | 380    | 405   | 430   | 480   | 530   | 580   | 605   | 630   | 645   | 660   | 670   | 0,0   |
| cm       | dR\dZ | 0     | 10    | 15    | 15     | 25    | 25    | 50    | 50    | 50    | 25    | 25    | 15    | 15    | 10    | 0     |
| 0- 5     | 5     |       |       |       |        |       |       |       |       |       |       |       |       |       |       |       |
| 5- 10    | 5     | 169   | 182.1 | 355.8 | 1218.4 | 657.1 | 432.9 | 575.1 | 920.1 | 822   | 725.4 | 694.5 | 700.5 | 729.1 | 753.1 | 491.1 |
| 10- 20   | 10    | 151.9 | 153.7 | 218.2 | 381.1  | 315.5 | 239   | 292.2 | 423.3 | 400   | 369.5 | 367   | 383.3 | 413.6 | 453.8 | 340   |
| 20- 30   | 10    | 120.9 | 123.2 | 147   | 186.5  | 180.7 | 159.2 | 183.7 | 243   | 241.8 | 233.9 | 239.1 | 256.5 | 282.7 | 327.1 | 275.9 |
| 30- 45   | 15    | 104.9 | 106.7 | 106.8 | 116.6  | 118.3 | 114.5 | 127.5 | 157.1 | 162.5 | 163.2 | 169.6 | 184.3 | 203.5 | 229.6 | 190.7 |
| 45- 60   | 15    | 95.5  | 96.1  | 83.1  | 83.8   | 85.3  | 86.4  | 93.9  | 109.7 | 116.2 | 120.5 | 126.6 | 136.4 | 147.4 | 159.1 | 128   |
| 60- 75   | 15    | 77.1  | 77.6  | 68.7  | 67.1   | 67.9  | 69.3  | 74.3  | 84.1  | 90.5  | 95.5  | 98.7  | 104.6 | 110.2 | 114.5 | 89.2  |
| 75- 95   | 20    | 63.9  | 63.9  | 57.3  | 55.5   | 55.1  | 56    | 59.6  | 66.1  | 71.6  | 74.7  | 76.5  | 78.2  | 80.8  | 80.9  | 60.4  |
| 95- 115  | 20    | 58.7  | 56.9  | 49.9  | 46.6   | 45.8  | 46.4  | 48.9  | 52.9  | 56.5  | 58.3  | 58    | 57.8  | 58.7  | 56.9  | 40.3  |
| 115- 125 | 10    | 55.4  | 52.9  | 44.9  | 42.2   | 41.1  | 41.3  | 43.2  | 45.3  | 48.3  | 49    | 47.9  | 46.7  | 47.3  | 44.8  | 30.7  |
| 125- 150 | 25    | 45.3  | 43.8  | 39.6  | 37.3   | 36.5  | 36.4  | 37.4  | 38.6  | 40.9  | 40.5  | 38.4  | 37.3  | 37.8  | 35    | 23.3  |
| 150- 175 | 25    | 36.4  | 35.4  | 33.3  | 32.2   | 31.5  | 30.9  | 30.7  | 31.9  | 32.6  | 31.8  | 28.6  | 28.1  | 28    | 25.4  | 16.2  |
| 175-200  | 25    | 30.3  | 29.4  | 28    | 27.1   | 26.4  | 25.4  | 26.2  | 26.9  | 26.1  | 25.1  | 21.7  | 22    | 21.1  | 19    | 11.4  |
| 200-225  | 25    | 25.6  | 24.5  | 23.5  | 22.8   | 22    | 22    | 22.5  | 22.2  | 21.5  | 19.7  | 16.9  | 17.6  | 16.2  | 14.6  | 8.1   |

Equivalent dose rate in the general access scenario for T= 10y, t= 100 d



Fig. A1.2. Detector opening layout to calculations of access dose rate -- Lar EndCap removed.

|          |       |       |       |       |       |       |      |      |       |       |       | ,     |       |       |       |       |
|----------|-------|-------|-------|-------|-------|-------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|
|          |       | 340   | 340-  | 350-  | 365-  | 380-  | 405- | 430- | 480-  | 530-  | 580-  | 605-  | 630-  | 645-  | 660-  | 670   |
| R/Z,     |       |       | 350   | 365   | 380   | 405   | 430  | 480  | 530   | 580   | 605   | 630   | 645   | 660   | 670   |       |
| cm       | dR\dZ | 0     | 10    | 15    | 15    | 25    | 25   | 50   | 50    | 50    | 25    | 25    | 15    | 15    | 10    | 0     |
| 0- 5     | 5     | -     | -     | -     | 198.4 | 116.1 | 99   | 96   | 104.4 | 133.9 | 193.6 | 268.2 | 359.2 | 476.8 | 655.1 | 734.8 |
| 5- 10    | 5     | 258   | 233   | 216.1 | 161.8 | 113.1 | 96.3 | 93   | 100.5 | 129.5 | 184.1 | 251.1 | 336   | 436.5 | 562.7 | 602.5 |
| 10- 20   | 10    | 226.9 | 202.4 | 162.7 | 136.2 | 110   | 94.5 | 90.4 | 97.3  | 127   | 177.2 | 230.5 | 307.9 | 397   | 500.7 | 532.6 |
| 20- 30   | 10    | 186.3 | 173.7 | 143.6 | 123.4 | 105.5 | 91.6 | 86.6 | 92.8  | 121.6 | 163.6 | 211.8 | 277.1 | 346.2 | 436   | 469.9 |
| 30- 45   | 15    | 183.4 | 175.8 | 134.8 | 115.2 | 99.8  | 87.9 | 80.7 | 86.1  | 110.3 | 144.6 | 184.4 | 235.4 | 293   | 360.5 | 380.7 |
| 45- 60   | 15    | 185   | 179.8 | 128.3 | 108.6 | 93.5  | 83.3 | 75.5 | 80.4  | 100.3 | 130.1 | 158.7 | 194.7 | 231.8 | 273.8 | 282.3 |
| 60- 75   | 15    | 159   | 155.1 | 120   | 102.2 | 88.6  | 78.6 | 71.8 | 75.6  | 92.3  | 114   | 133.6 | 156.2 | 175.3 | 194.5 | 193.8 |
| 75- 95   | 20    | 142.9 | 138.2 | 111.7 | 95.7  | 82.2  | 73.7 | 68.4 | 69.6  | 81.6  | 97.5  | 106   | 116.6 | 124   | 126.4 | 121.4 |
| 95-115   | 20    | 153.7 | 141.3 | 107.2 | 88.8  | 76.3  | 68.3 | 63.2 | 62.5  | 71.6  | 77.8  | 80.5  | 81.5  | 83.3  | 79.8  | 73.4  |
| 115- 125 | 10    | 149.3 | 139   | 101.3 | 83.5  | 71.9  | 64.7 | 59   | 57.9  | 63.6  | 65.9  | 65.1  | 62.3  | 63.2  | 57.7  | 51.5  |
| 125- 150 | 25    | 112.7 | 105.7 | 87.7  | 76    | 66.7  | 60   | 54.5 | 53.1  | 54.1  | 55.3  | 49.6  | 46.6  | 46.6  | 41.1  | 35.8  |
| 150- 175 | 25    | 84.3  | 80.5  | 70.2  | 63.9  | 57.8  | 52   | 47.8 | 46    | 44.4  | 42.1  | 33.8  | 31.8  | 31.3  | 26.3  | 22    |
| 175- 200 | 25    | 63.9  | 61.6  | 56.3  | 52.6  | 48.4  | 44.4 | 41.4 | 39.2  | 35.9  | 32.3  | 23.4  | 22.8  | 21.2  | 16.5  | 12.5  |
| 200-225  | 25    | 49.7  | 47.7  | 44.4  | 42    | 38.9  | 36.7 | 36.3 | 32.9  | 29.1  | 24.6  | 16.6  | 17.2  | 14.4  | 10.4  | 6.9   |

Equivalent dose rate in the ID access scenario without LA beam-pipe for T= 100d, t=1d

Table A1.2

|          |       | 340   | 340-  | 350-  | 365-   | 380-   | 405-   | 430-   | 480-   | 530-   | 580-   | 605-   | 630-   | 645-   | 660-   | 670   |
|----------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|
| R/Z,     |       |       | 350   | 365   | 380    | 405    | 430    | 480    | 530    | 580    | 605    | 630    | 645    | 660    | 670    |       |
| cm       | dR\dZ | 0     | 10    | 15    | 15     | 25     | 25     | 50     | 50     | 50     | 25     | 25     | 15     | 15     | 10     | 0     |
| 0- 5     | 5     |       |       |       |        |        |        |        |        |        |        |        |        |        |        |       |
| 5- 10    | 5     | 348.3 | 392.8 | 933.3 | 3645.1 | 2116.5 | 1421.7 | 1888.6 | 3006.5 | 2702.5 | 2357.9 | 2184.7 | 2090.8 | 2051.9 | 1981.1 | 982.4 |
| 10- 20   | 10    | 302.3 | 336.1 | 570   | 1109.8 | 963.5  | 741.4  | 920    | 1340.2 | 1248.8 | 1105.2 | 1029.5 | 984.1  | 956.9  | 925.9  | 460   |
| 20- 30   | 10    | 245.7 | 267.1 | 366.1 | 512.1  | 520.4  | 465.9  | 551.3  | 736.7  | 710.4  | 640.1  | 599.1  | 572.1  | 554.1  | 536.9  | 266.3 |
| 30- 45   | 15    | 203.4 | 214.5 | 247.8 | 297.2  | 318.4  | 316.7  | 363.8  | 453    | 447.6  | 411.5  | 386.7  | 369.8  | 357.6  | 347.2  | 172.3 |
| 45-60    | 15    | 169.8 | 175.4 | 178.8 | 197.6  | 214.1  | 225.2  | 253.6  | 299.2  | 300.1  | 281.1  | 265.4  | 254.5  | 246.4  | 239.4  | 118.7 |
| 60- 75   | 15    | 135.9 | 138.9 | 140.3 | 149.3  | 161.4  | 172    | 191.7  | 217.8  | 219.9  | 208.8  | 198.3  | 190.6  | 184.8  | 180.1  | 89.3  |
| 75-95    | 20    | 111.4 | 112.7 | 112.6 | 117.6  | 124.4  | 133.3  | 146.6  | 162    | 163.9  | 157.5  | 150    | 144.6  | 140.8  | 137.1  | 68    |
| 95- 115  | 20    | 99.7  | 98.5  | 94.1  | 94.8   | 98.5   | 104.8  | 113.2  | 122.4  | 124.1  | 119.9  | 114.8  | 111.3  | 108.4  | 105.9  | 52.6  |
| 115- 125 | 10    | 91.3  | 89.6  | 83.1  | 82.6   | 85     | 89.2   | 95.8   | 102.5  | 103.8  | 100.7  | 96.4   | 93.7   | 91.5   | 89.4   | 44.3  |
| 125- 150 | 25    | 74.4  | 73.6  | 71.6  | 71.4   | 72.8   | 76     | 80.6   | 85     | 86     | 84     | 80.2   | 78.3   | 76.4   | 74.8   | 37.1  |
| 150- 175 | 25    | 60.1  | 59.4  | 58.7  | 58.9   | 59.8   | 61.7   | 65     | 67.6   | 68.2   | 66.5   | 63.5   | 62.2   | 60.8   | 59.7   | 29.7  |
| 175-200  | 25    | 49.8  | 49    | 49.1  | 49.5   | 50.1   | 51.3   | 53.5   | 55.2   | 55.3   | 54     | 51.8   | 50.6   | 49.7   | 48.9   | 24.3  |
| 200-225  | 25    | 41.8  | 41.2  | 41.6  | 42.1   | 42.3   | 43.1   | 44.7   | 46     | 46     | 45     | 42.9   | 42.2   | 41.5   | 41     | 20.3  |

Equivalent dose rate in the ID access scenario for T= 100 d, t= 5 d -- Lar EndCap removed

Table A1.2 (continuation)

|          |       | 340  | 340- | 350-  | 365-  | 380-  | 405-  | 430-  | 480-  | 530-  | 580-  | 605-  | 630-  | 645-  | 660-  | 670  |
|----------|-------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| R/Z,     |       |      | 350  | 365   | 380   | 405   | 430   | 480   | 530   | 580   | 605   | 630   | 645   | 660   | 670   |      |
| cm       | dR\dZ | 0    | 10   | 15    | 15    | 25    | 25    | 50    | 50    | 50    | 25    | 25    | 15    | 15    | 10    | 0    |
| 0-5      | 5     |      |      |       |       |       |       |       |       |       |       |       |       |       |       |      |
| 5- 10    | 5     | 76   | 83.4 | 181.1 | 676.7 | 383.7 | 255.9 | 355.7 | 596.5 | 527.7 | 448.3 | 408.8 | 387.5 | 377.1 | 362   | 179  |
| 10- 20   | 10    | 66.7 | 70.8 | 110.8 | 207.7 | 177.6 | 136.1 | 174.7 | 264.8 | 243.5 | 210.2 | 193.2 | 182.7 | 176.5 | 170.1 | 84.1 |
| 20- 30   | 10    | 53.6 | 56.5 | 72.7  | 97.9  | 97.9  | 87.4  | 105.6 | 145.2 | 138.5 | 121.8 | 112.6 | 106.5 | 102.7 | 99.1  | 49   |
| 30- 45   | 15    | 46.2 | 47.6 | 50.6  | 58.5  | 61.4  | 60.5  | 70.3  | 89    | 87.1  | 78.4  | 72.8  | 69.1  | 66.5  | 64.3  | 31.6 |
| 45- 60   | 15    | 40.5 | 41.2 | 38.1  | 40.2  | 42.4  | 44    | 49.6  | 58.7  | 58.3  | 53.5  | 50.1  | 47.8  | 46.1  | 44.6  | 21.9 |
| 60- 75   | 15    | 32.3 | 32.8 | 30.4  | 31.1  | 32.7  | 33.9  | 37.9  | 42.6  | 42.7  | 39.8  | 37.5  | 35.9  | 34.7  | 33.7  | 16.5 |
| 75-95    | 20    | 26.5 | 26.8 | 24.9  | 24.9  | 25.7  | 26.9  | 29.5  | 31.9  | 31.7  | 30    | 28.5  | 27.3  | 26.5  | 25.8  | 12.5 |
| 95-115   | 20    | 24.2 | 23.6 | 21.5  | 20.5  | 20.8  | 21.4  | 22.7  | 24.3  | 24.1  | 23    | 21.8  | 21.1  | 20.6  | 20    | 9.6  |
| 115- 125 | 10    | 22.6 | 21.8 | 19.1  | 18.2  | 17.8  | 18.4  | 19.2  | 20.5  | 20.1  | 19.2  | 18.3  | 17.8  | 17.3  | 17    | 8.1  |
| 125- 150 | 25    | 18.3 | 17.5 | 16.3  | 15.8  | 15.4  | 15.9  | 16.3  | 17    | 16.5  | 16    | 15.4  | 14.9  | 14.6  | 14.3  | 6.8  |
| 150- 175 | 25    | 14.2 | 13.8 | 13.1  | 12.9  | 12.6  | 13    | 13.4  | 13.4  | 13.2  | 12.8  | 12.2  | 11.9  | 11.7  | 11.5  | 5.4  |
| 175-200  | 25    | 11.6 | 11.4 | 10.7  | 10.7  | 10.8  | 10.7  | 11.2  | 11    | 10.8  | 10.5  | 10    | 9.8   | 9.6   | 9.5   | 4.5  |
| 200-225  | 25    | 9.7  | 9.4  | 9.3   | 9.1   | 9.1   | 9.3   | 9.3   | 9     | 9     | 8.8   | 8.4   | 8.2   | 8.1   | 8     | 3.7  |

Equivalent dose rate in the ID access scenario for T= 100 d, t= 100 d-- Lar EndCap removed

Table 2 (continuation)

| Equivalent dose rate in the ID | access scenario without L | A beam_ning for T= 10v t=1d            |
|--------------------------------|---------------------------|----------------------------------------|
|                                | access scenario without L | A Dealth-Dide Iol $I = 100$ . $I = 10$ |

|          |       |       |       |       |       |       |       |       |       |       |       | <b>,</b> , |       |       |       |       |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------|-------|-------|-------|-------|
|          |       | 340   | 340-  | 350-  | 365-  | 380-  | 405-  | 430-  | 480-  | 530-  | 580-  | 605-       | 630-  | 645-  | 660-  | 670   |
| R/Z,     |       |       | 350   | 365   | 380   | 405   | 430   | 480   | 530   | 580   | 605   | 630        | 645   | 660   | 670   |       |
| cm       | dR\dZ | 0     | 10    | 15    | 15    | 25    | 25    | 50    | 50    | 50    | 25    | 25         | 15    | 15    | 10    | 0     |
| 0- 5     | 5     | -     | -     | -     | 271.2 | 144   | 121.4 | 118.2 | 129.8 | 169.3 | 241.9 | 337.7      | 453.6 | 609.7 | 828.9 | 922.2 |
| 5- 10    | 5     | 325.3 | 298.7 | 292.9 | 212.8 | 140.1 | 118.3 | 114.3 | 124.7 | 162.3 | 231.8 | 317.5      | 428.9 | 561.5 | 722.2 | 769.3 |
| 10- 20   | 10    | 288.8 | 255.9 | 208.5 | 172.2 | 135.9 | 115.8 | 111   | 120.8 | 158.2 | 222.2 | 292.7      | 393.7 | 513.2 | 654.2 | 696.3 |
| 20- 30   | 10    | 233.2 | 216.3 | 179.5 | 153.6 | 129.8 | 112.5 | 106.3 | 114.9 | 150.9 | 205.4 | 268.6      | 353.3 | 448.6 | 579.4 | 630   |
| 30- 45   | 15    | 227.1 | 217.9 | 166.6 | 141.9 | 122.4 | 107.9 | 99.4  | 106.5 | 137.6 | 182.7 | 234.5      | 300.7 | 376   | 469.2 | 497.9 |
| 45- 60   | 15    | 230   | 223.5 | 157.7 | 132.6 | 114.4 | 102.3 | 93    | 99.5  | 124.9 | 163.3 | 201.2      | 248.6 | 296.3 | 348.9 | 359.5 |
| 60- 75   | 15    | 196.2 | 190.9 | 146.9 | 124.2 | 108.3 | 95.6  | 88.2  | 93.2  | 115   | 143.7 | 168.5      | 197.8 | 223.7 | 246.2 | 243.4 |
| 75- 95   | 20    | 173.8 | 168.5 | 135.9 | 116   | 100.8 | 89.8  | 84    | 86.1  | 102.4 | 122.2 | 134.2      | 147.5 | 158   | 162.1 | 155.7 |
| 95- 115  | 20    | 183.7 | 169.6 | 129.1 | 107.4 | 92.8  | 84.1  | 78    | 77.7  | 89.2  | 98.6  | 101.8      | 103.5 | 106.9 | 102.8 | 94.4  |
| 115- 125 | 10    | 178.8 | 166.1 | 121.8 | 101.1 | 87.8  | 79    | 73.2  | 71.8  | 79.1  | 83.3  | 82.2       | 79.1  | 81.4  | 74.5  | 66.5  |
| 125- 150 | 25    | 136.7 | 128   | 105.9 | 92.5  | 81.9  | 73.6  | 67.2  | 65.6  | 68.2  | 69.9  | 62.9       | 59.2  | 60.7  | 53.3  | 46.6  |
| 150- 175 | 25    | 103.3 | 98.3  | 86.3  | 78.7  | 71.1  | 64    | 58.6  | 56.9  | 55.6  | 53.8  | 42.8       | 41    | 40.9  | 33.7  | 28.4  |
| 175-200  | 25    | 80.2  | 76.5  | 70.1  | 65.4  | 59.8  | 54.4  | 51.1  | 48.9  | 45.1  | 40.9  | 29.5       | 29.7  | 27.5  | 21    | 16.5  |
| 200-225  | 25    | 62.7  | 59.7  | 55.6  | 52.3  | 48.3  | 45.6  | 44.9  | 41    | 36.7  | 30.9  | 21.3       | 22.3  | 18.1  | 13.1  | 9.2   |

Table A1.2 (continuation)

|          |       | 340   | 340-  | 350-   | 365-   | 380-   | 405-   | 430-   | 480-   | 530-   | 580-   | 605-   | 630-   | 645-   | 660-   | 670    |
|----------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| R/Z,     |       |       | 350   | 365    | 380    | 405    | 430    | 480    | 530    | 580    | 605    | 630    | 645    | 660    | 670    |        |
| cm       | dR\dZ | 0     | 10    | 15     | 15     | 25     | 25     | 50     | 50     | 50     | 25     | 25     | 15     | 15     | 10     | 0      |
| 0- 5     | 5     |       |       |        |        |        |        |        |        |        |        |        |        |        |        |        |
| 5- 10    | 5     | 448.6 | 500.3 | 1139.8 | 4322.1 | 2457.9 | 1642.8 | 2169.4 | 3436.6 | 3072.2 | 2671.1 | 2472.9 | 2363.6 | 2319.1 | 2237.1 | 1110.7 |
| 10- 20   | 10    | 393.8 | 425.2 | 691.6  | 1317.1 | 1129.5 | 860.7  | 1058.8 | 1531.6 | 1422.4 | 1253.9 | 1166.6 | 1113.4 | 1083.3 | 1046.5 | 519.2  |
| 20- 30   | 10    | 316.8 | 337.5 | 446.9  | 611.7  | 614.3  | 544.7  | 637.4  | 845.1  | 810.4  | 727.5  | 679.6  | 648.8  | 627.4  | 608.1  | 302.1  |
| 30- 45   | 15    | 264.9 | 276.3 | 306.1  | 359.1  | 379    | 372.6  | 422.7  | 521.3  | 511.9  | 468.5  | 439.3  | 419.7  | 405.6  | 393.3  | 195.5  |
| 45- 60   | 15    | 226.9 | 231.6 | 224.9  | 242.1  | 257.1  | 267.2  | 296.7  | 345.7  | 344.5  | 321.1  | 302.3  | 289.1  | 280    | 271.7  | 134.9  |
| 60- 75   | 15    | 181.7 | 184.2 | 178.5  | 185.1  | 195.5  | 205.6  | 225.3  | 252.4  | 253.4  | 239.3  | 226.1  | 217    | 210.6  | 205    | 101.7  |
| 75-95    | 20    | 149.3 | 150.2 | 144.6  | 147.1  | 152.7  | 160.3  | 173.4  | 188.5  | 189.7  | 181    | 171.7  | 165.3  | 160.5  | 156.5  | 77.7   |
| 95- 115  | 20    | 134.9 | 132.1 | 121.9  | 119.8  | 121.9  | 127    | 134.9  | 143.8  | 144.1  | 138.9  | 131.9  | 127.4  | 124.3  | 121.4  | 60.2   |
| 115- 125 | 10    | 124.6 | 121.3 | 108.8  | 105    | 106.1  | 108.8  | 114.7  | 120.3  | 120.8  | 116.8  | 110.9  | 107.3  | 104.7  | 102.6  | 50.9   |
| 125- 150 | 25    | 101.8 | 99.2  | 93.2   | 91.2   | 91.2   | 93     | 96.9   | 100.2  | 100.6  | 97.7   | 92.2   | 89.8   | 87.9   | 86.2   | 42.6   |
| 150-175  | 25    | 81.4  | 79.4  | 76.6   | 75.3   | 75.1   | 76.3   | 78.5   | 80.6   | 80.1   | 78.1   | 73.4   | 71.7   | 70.3   | 69.2   | 34.1   |
| 175-200  | 25    | 66.4  | 64.9  | 64.2   | 63.7   | 63.4   | 63.8   | 65.2   | 66.1   | 65.4   | 63.7   | 60     | 58.7   | 57.8   | 56.6   | 28.1   |
| 200-225  | 25    | 56.2  | 54.7  | 54     | 54.2   | 53.6   | 53.9   | 54.5   | 55.4   | 54.9   | 53     | 50.1   | 49.2   | 48.2   | 47.1   | 23.5   |

Equivalent dose rate in the ID access scenario for T= 10y, t= 5 d--- Lar EndCap removed

Table A1.2 (continuation)

|          |       | 340   | 340-  | 350-  | 365-   | 380-  | 405-  | 430-  | 480-  | 530-  | 580-  | 605-  | 630-  | 645-  | 660-  | 670   |
|----------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| D/7      |       | 540   | 250   | 265   | 200-   | 405   | 420   | 400   | F20   | 500-  | 60F   | 620   | 645   | 660   | 670   | 070   |
| κ/Ζ,     |       |       | 350   | 305   | 300    | 405   | 430   | 400   | 530   | 000   | 605   | 030   | 045   | 000   | 670   |       |
| cm       | dR\dZ | 0     | 10    | 15    | 15     | 25    | 25    | 50    | 50    | 50    | 25    | 25    | 15    | 15    | 10    | 0     |
| 0- 5     | 5     |       |       |       |        |       |       |       |       |       |       |       |       |       |       |       |
| 5- 10    | 5     | 159.6 | 172.6 | 345.7 | 1207.5 | 645.1 | 419.4 | 558.1 | 895.7 | 783.8 | 666.8 | 609.1 | 579.4 | 564   | 542   | 268.7 |
| 10- 20   | 10    | 142.9 | 144.6 | 208.6 | 370.7  | 304   | 226.1 | 276   | 400.2 | 364   | 314.5 | 288.5 | 273.6 | 264.6 | 255.5 | 126.9 |
| 20- 30   | 10    | 112.4 | 114.5 | 137.8 | 176.7  | 169.9 | 146.9 | 168.6 | 221.6 | 208.5 | 183.8 | 168.6 | 160   | 154.3 | 149   | 74.2  |
| 30- 45   | 15    | 97    | 98.7  | 98.3  | 107.6  | 108.4 | 103.3 | 113.7 | 137.7 | 132.6 | 119.3 | 109.5 | 104.2 | 100.3 | 97    | 48.3  |
| 45- 60   | 15    | 88.3  | 88.8  | 75.4  | 75.6   | 76.3  | 76.3  | 81.5  | 92.4  | 90    | 82.4  | 75.8  | 72.2  | 69.7  | 67.5  | 33.8  |
| 60- 75   | 15    | 70.5  | 70.9  | 61.7  | 59.7   | 59.9  | 60.3  | 63.2  | 68.5  | 67    | 62.1  | 57    | 54.5  | 52.8  | 51    | 25.7  |
| 75-95    | 20    | 58.2  | 58.1  | 51.2  | 49.1   | 48.2  | 48.1  | 49.5  | 51.8  | 50.8  | 47.5  | 43.5  | 41.8  | 40.6  | 39.2  | 19.8  |
| 95- 115  | 20    | 53.9  | 52    | 44.7  | 41.1   | 39.5  | 39    | 39.3  | 40.2  | 39.2  | 36.5  | 33.6  | 32.5  | 31.4  | 30.6  | 15.5  |
| 115- 125 | 10    | 50.9  | 48.3  | 40    | 36.8   | 34.8  | 33.9  | 34.1  | 33.9  | 33.2  | 31    | 28.5  | 27.5  | 26.6  | 26    | 13.3  |
| 125- 150 | 25    | 40.8  | 39.2  | 34.5  | 31.8   | 30.2  | 29.3  | 29.3  | 28.7  | 28.1  | 26.2  | 23.8  | 23.2  | 22.5  | 22    | 11.1  |
| 150- 175 | 25    | 31.6  | 30.5  | 28.1  | 26.7   | 25.7  | 24.9  | 24.3  | 23.5  | 22.9  | 21.2  | 19.2  | 18.5  | 18.1  | 17.7  | 8.9   |
| 175-200  | 25    | 25.6  | 24.7  | 23.3  | 22.5   | 21.8  | 20.8  | 20.6  | 19.7  | 18.8  | 17.5  | 15.7  | 15.2  | 14.9  | 14.7  | 7.4   |
| 200-225  | 25    | 21.9  | 20.9  | 19.9  | 19.3   | 18.5  | 18    | 17.2  | 16.8  | 15.7  | 14.7  | 13.1  | 12.8  | 12.6  | 12.5  | 6.2   |

Equivalent dose rate in the ID access scenario for T= 10 y, t= 100 d-- Lar EndCap removed



Fig. A1.3. Detector opening layout to calculations of access dose rate – Lar EC and VA removed.

|          |       | E    |           |           | :    |          |          | :. f T |          |           |          |          | Table / | 41.3 (co | ntinuatio | n)  |
|----------|-------|------|-----------|-----------|------|----------|----------|--------|----------|-----------|----------|----------|---------|----------|-----------|-----|
|          |       | Equ  | ivalent c | lose rate |      | J access | s scenar |        | 100 a, i | = 5 a - 1 | Lar EC a | ina va r | emovea  |          |           |     |
|          |       | 340  | 340-      | 350-      | 365- | 380-     | 405-     | 430-   | 480-     | 530-      | 580-     | 605-     | 630-    | 645-     | 660-      | 670 |
| R/Z,     |       |      | 350       | 365       | 380  | 405      | 430      | 480    | 530      | 580       | 605      | 630      | 645     | 660      | 670       |     |
| cm       | dR\dZ | 0    | 10        | 15        | 15   | 25       | 25       | 50     | 50       | 50        | 25       | 25       | 15      | 15       | 10        | 0   |
| 0- 5     | 5     |      |           |           | 42.2 | 22       | 14.9     | 11.5   | 7.8      | 5.2       | 4.5      | 2.3      | 2       | 1.9      | 1.8       | 0.6 |
| 5- 10    | 5     | 87.5 | 71.2      | 50.7      | 34.8 | 21.9     | 14.9     | 11.5   | 7.8      | 5.2       | 4.5      | 2.3      | 2       | 1.9      | 1.8       | 0.6 |
| 10- 20   | 10    | 68.9 | 58.9      | 38.5      | 29.4 | 21.4     | 14.7     | 11.5   | 7.8      | 5.5       | 4.5      | 2.3      | 2       | 1.9      | 1.8       | 0.6 |
| 20- 30   | 10    | 51.2 | 46.7      | 34.1      | 27   | 20.6     | 15       | 11.2   | 7.6      | 5.6       | 4.5      | 2.3      | 2       | 1.9      | 1.8       | 0.6 |
| 30- 45   | 15    | 51.2 | 48.5      | 32.6      | 25.5 | 19.7     | 15.2     | 10.9   | 7.7      | 5.7       | 4.4      | 2.3      | 2       | 1.9      | 1.8       | 0.6 |
| 45- 60   | 15    | 52.5 | 50.9      | 31        | 23.9 | 18.9     | 15.2     | 10.3   | 7.8      | 5.7       | 4.2      | 2.3      | 2       | 1.9      | 1.8       | 0.6 |
| 60- 75   | 15    | 41.9 | 40.8      | 28.7      | 22.4 | 18.6     | 14.5     | 10.5   | 7.7      | 5.5       | 4.2      | 2.3      | 1.9     | 1.9      | 1.8       | 0.6 |
| 75- 95   | 20    | 35.8 | 34.5      | 26.1      | 21.5 | 17       | 13.9     | 10.4   | 7.5      | 5.5       | 4.2      | 2.2      | 1.9     | 1.9      | 1.6       | 0.6 |
| 95- 115  | 20    | 38.1 | 35.3      | 25.6      | 20   | 15.9     | 13.2     | 9.7    | 7        | 5.3       | 3.8      | 2.1      | 1.9     | 1.8      | 1.5       | 0.6 |
| 115- 125 | 10    | 37.5 | 34.6      | 24        | 18.7 | 15       | 12.1     | 9.3    | 6.9      | 5.3       | 3.9      | 2        | 1.9     | 1.8      | 1.5       | 0.6 |
| 125- 150 | 25    | 27.8 | 25.9      | 20.9      | 17   | 13.8     | 11.5     | 8.9    | 6.4      | 5         | 3.9      | 1.9      | 1.9     | 1.6      | 1.5       | 0.6 |
| 150- 175 | 25    | 21   | 19.7      | 16.8      | 14.5 | 12.2     | 10.1     | 8.3    | 6.1      | 4.9       | 3.6      | 1.9      | 1.8     | 1.5      | 1.4       | 0.6 |
| 175-200  | 25    | 16.4 | 15.1      | 13.8      | 12.3 | 10.6     | 8.9      | 7.5    | 5.6      | 4.3       | 3.3      | 1.9      | 1.6     | 1.4      | 1.4       | 0.6 |
| 200-225  | 25    | 12.8 | 11.9      | 11.1      | 10.3 | 8.8      | 7.5      | 6.4    | 5.1      | 4         | 3.1      | 1.6      | 1.5     | 1.4      | 1.4       | 0.6 |

|          |       | Equi | valent d | oso rato | in the II |      | scenari | o for T- | 100 d t          | -100d          | l ar EC a | and $\sqrt{\Lambda}$ r | Table / | A1.3 (coi | ntinuatio | n)  |
|----------|-------|------|----------|----------|-----------|------|---------|----------|------------------|----------------|-----------|------------------------|---------|-----------|-----------|-----|
|          |       | 240  |          | 350-     | 365-      | 380- |         | 430-     | 100 u, t<br>480- | -1000-<br>530- |           | 605-                   |         | 645-      | 660-      | 670 |
| R/Z.     |       | 540  | 350      | 365      | 380       | 405  | 430     | 480      | 530              | 580            | 605       | 630                    | 645     | 660       | 670       | 070 |
| cm       | dR\dZ | 0    | 10       | 15       | 15        | 25   | 25      | 50       | 50               | 50             | 25        | 25                     | 15      | 15        | 10        | 0   |
| 0- 5     | 5     |      |          |          | 20.5      | 7.8  | 5       | 3.8      | 2.5              | 1.5            | 1         | 0.6                    | 0.6     | 0.6       | 0.6       | 0.6 |
| 5- 10    | 5     | 28.8 | 25.2     | 23       | 15.1      | 7.7  | 5       | 3.7      | 2.5              | 1.5            | 1         | 0.6                    | 0.6     | 0.6       | 0.6       | 0.6 |
| 10- 20   | 10    | 24.4 | 20.6     | 14.9     | 11.3      | 7.4  | 5       | 3.7      | 2.5              | 1.5            | 1         | 0.6                    | 0.6     | 0.6       | 0.6       | 0.6 |
| 20- 30   | 10    | 18.2 | 16.4     | 12.4     | 9.8       | 7.2  | 5.1     | 3.7      | 2.5              | 1.7            | 1         | 0.6                    | 0.6     | 0.6       | 0.6       | 0.6 |
| 30- 45   | 15    | 18.4 | 17.3     | 11.4     | 8.9       | 6.8  | 5       | 3.6      | 2.4              | 1.7            | 1         | 0.6                    | 0.6     | 0.6       | 0.6       | 0.6 |
| 45- 60   | 15    | 19   | 18.4     | 11       | 8.3       | 6.6  | 5       | 3.6      | 2.4              | 1.7            | 1         | 0.6                    | 0.6     | 0.6       | 0.6       | 0.6 |
| 60- 75   | 15    | 15   | 14.7     | 9.9      | 7.7       | 6.3  | 4.6     | 3.7      | 2.3              | 1.6            | 1         | 0.6                    | 0.6     | 0.6       | 0.6       | 0.6 |
| 75- 95   | 20    | 12.5 | 12.3     | 8.9      | 7.1       | 5.8  | 4.6     | 3.7      | 2.3              | 1.5            | 1         | 0.6                    | 0.6     | 0.6       | 0.6       | 0.6 |
| 95- 115  | 20    | 12.8 | 11.8     | 8.7      | 6.5       | 5.4  | 4.3     | 3.2      | 2.3              | 1.5            | 1         | 0.6                    | 0.6     | 0.6       | 0.6       | 0.6 |
| 115- 125 | 10    | 12.6 | 11.6     | 8.1      | 6.3       | 4.7  | 3.9     | 2.9      | 2.3              | 1.4            | 1         | 0.6                    | 0.6     | 0.6       | 0.6       | 0.6 |
| 125- 150 | 25    | 9.6  | 8.6      | 6.8      | 5.7       | 4.4  | 3.8     | 2.8      | 2.1              | 1.2            | 1         | 0.6                    | 0.6     | 0.6       | 0.6       | 0.6 |
| 150- 175 | 25    | 6.9  | 6.4      | 5.3      | 4.6       | 3.7  | 3.3     | 2.7      | 1.8              | 1.2            | 1         | 0.6                    | 0.6     | 0.6       | 0.6       | 0.6 |
| 175-200  | 25    | 5.3  | 5        | 4.1      | 3.8       | 3.4  | 2.8     | 2.5      | 1.6              | 1.2            | 1         | 0.6                    | 0.6     | 0.6       | 0.6       | 0.6 |
| 200-225  | 25    | 4.3  | 3.9      | 3.6      | 3.2       | 2.8  | 2.6     | 2.1      | 1.3              | 1.1            | 0.9       | 0.6                    | 0.6     | 0.6       | 0.6       | 0.6 |

Table A1.3 (continuation)

|          |       | 340   | 340-  | 350-  | 365-  | 380- | 405- | 430- | 480- | 530- | 580- | 605- | 630- | 645- | 660- | 670 |
|----------|-------|-------|-------|-------|-------|------|------|------|------|------|------|------|------|------|------|-----|
| R/Z,     |       |       | 350   | 365   | 380   | 405  | 430  | 480  | 530  | 580  | 605  | 630  | 645  | 660  | 670  |     |
| cm       | dR\dZ | 0     | 10    | 15    | 15    | 25   | 25   | 50   | 50   | 50   | 25   | 25   | 15   | 15   | 10   | 0   |
| 0- 5     | 5     |       |       |       | 104.6 | 40.2 | 26.5 | 19.9 | 13.4 | 9    | 7.1  | 4.1  | 3.8  | 3.2  | 3.1  | 1.7 |
| 5- 10    | 5     | 147.4 | 128.5 | 118.2 | 76.5  | 39.7 | 26.4 | 19.8 | 13.4 | 9    | 7.1  | 4.1  | 3.6  | 3.2  | 3.1  | 1.7 |
| 10- 20   | 10    | 124.1 | 104.9 | 76.2  | 57.1  | 38.3 | 26.3 | 19.7 | 13.4 | 9.2  | 7.1  | 4.1  | 3.6  | 3.2  | 3.1  | 1.7 |
| 20- 30   | 10    | 92    | 82.8  | 62.3  | 48.9  | 36.7 | 26.3 | 19.4 | 13.4 | 9.5  | 7.1  | 4.1  | 3.6  | 3.2  | 3.1  | 1.7 |
| 30- 45   | 15    | 89.2  | 84.4  | 57.4  | 44.9  | 34.5 | 26.3 | 18.8 | 13.3 | 9.6  | 7    | 4    | 3.5  | 3.2  | 3    | 1.6 |
| 45- 60   | 15    | 91.8  | 88.4  | 54.4  | 41.8  | 32.7 | 26   | 18.4 | 13.4 | 9.7  | 7.1  | 4    | 3.3  | 3.2  | 3    | 1.3 |
| 60- 75   | 15    | 73.6  | 71.2  | 50    | 39.2  | 31.5 | 24.8 | 18.1 | 12.8 | 9.8  | 7.1  | 4    | 3.3  | 3.2  | 3    | 1.3 |
| 75-95    | 20    | 62.4  | 60.3  | 45.2  | 36.8  | 29.4 | 23.5 | 17.7 | 12.5 | 9.6  | 6.9  | 4    | 3.3  | 3.2  | 3    | 1.3 |
| 95- 115  | 20    | 64.3  | 59.6  | 43.3  | 34    | 27.1 | 22.1 | 16.6 | 12.1 | 9    | 6.9  | 4    | 3.2  | 3.2  | 3    | 1.3 |
| 115- 125 | 10    | 63    | 58.2  | 41    | 31.8  | 25.9 | 20.5 | 15.9 | 11.4 | 8.7  | 6.8  | 3.8  | 3.2  | 3    | 3    | 1.3 |
| 125- 150 | 25    | 48.3  | 44.6  | 35.2  | 29    | 23.7 | 19.2 | 15.1 | 10.7 | 8.5  | 6.8  | 3.4  | 3.2  | 3    | 3    | 1.2 |
| 150- 175 | 25    | 36.7  | 33.9  | 28.7  | 24.5  | 20.6 | 17.4 | 13.8 | 10.6 | 8.1  | 6.7  | 3.3  | 3.1  | 3    | 3    | 1.2 |
| 175-200  | 25    | 28.2  | 26.2  | 23.8  | 21.2  | 18.2 | 15.4 | 12.7 | 9.7  | 7.4  | 6.1  | 3.2  | 3    | 3    | 2.7  | 1.2 |
| 200-225  | 25    | 23.1  | 21.2  | 19.2  | 17.9  | 15.3 | 13.2 | 10.8 | 8.8  | 7.1  | 5.4  | 3.1  | 3    | 2.7  | 2.2  | 1.2 |

Equivalent dose rate in the ID access scenario for T= 10y, t= 5 d– Lar EC and VA removed

|          |       | Г au | ivelent e |      | in the l |      |          | ia far T-    | 40.7 1-      | 400 - 1 | ar 50 a |      | Table / | 41.3 (coi | ntinuatio   | n)  |
|----------|-------|------|-----------|------|----------|------|----------|--------------|--------------|---------|---------|------|---------|-----------|-------------|-----|
|          |       | Equ  |           |      |          |      | s scenar | 10  for  1 = | 10y, t = 400 |         | _arec a |      |         | C 4 F     | 000         | 070 |
|          |       | 340  | 340-      | 350- | 305-     | 380- | 405-     | 430-         | 480-         | 530-    | 580-    | 605- | 630-    | 645-      | 660-<br>670 | 670 |
| κ/Ζ,     |       |      | 350       | 305  | 300      | 405  | 430      | 400          | 530          | 000     | 005     | 030  | 045     | 000       | 070         | -   |
| cm       | dR\d∠ | 0    | 10        | 15   | 15       | 25   | 25       | 50           | 50           | 50      | 25      | 25   | 15      | 15        | 10          | 0   |
| 0- 5     | 5     |      |           |      | 78.2     | 23.9 | 15.6     | 11           | 7.6          | 5       | 4.1     | 1.8  | 1.8     | 1.7       | 1.7         | 1   |
| 5- 10    | 5     | 81.9 | 76.8      | 85.7 | 53.8     | 23.5 | 15.5     | 11           | 7.6          | 5.1     | 4.1     | 1.8  | 1.8     | 1.7       | 1.7         | 1   |
| 10- 20   | 10    | 73.3 | 62        | 49.4 | 36.6     | 22.4 | 15.5     | 11           | 7.5          | 5.1     | 4.1     | 1.8  | 1.8     | 1.7       | 1.7         | 1   |
| 20- 30   | 10    | 54.4 | 48.7      | 38.1 | 29.8     | 21.1 | 15.3     | 10.9         | 7.5          | 5.2     | 4.1     | 1.8  | 1.8     | 1.7       | 1.6         | 1   |
| 30- 45   | 15    | 51.7 | 49.2      | 34   | 26.3     | 19.9 | 15.1     | 10.6         | 7.5          | 5.3     | 4.1     | 1.8  | 1.8     | 1.7       | 1.6         | 1   |
| 45- 60   | 15    | 53.6 | 52        | 31.5 | 24       | 18.7 | 14.7     | 10.5         | 7.4          | 5.3     | 4       | 1.8  | 1.7     | 1.7       | 1.6         | 1   |
| 60- 75   | 15    | 42.8 | 41.9      | 28.7 | 22.3     | 18   | 14.2     | 10.4         | 7.4          | 5.4     | 4       | 1.8  | 1.7     | 1.7       | 1.4         | 1   |
| 75- 95   | 20    | 35.9 | 35.1      | 25.8 | 20.8     | 16.7 | 13.2     | 9.9          | 7.1          | 5.3     | 3.9     | 1.8  | 1.7     | 1.7       | 1.4         | 1   |
| 95- 115  | 20    | 35.9 | 33.5      | 24.6 | 19.2     | 15.4 | 12.3     | 9.2          | 6.8          | 5.2     | 3.5     | 1.8  | 1.7     | 1.5       | 1.4         | 1   |
| 115- 125 | 10    | 35.2 | 32.2      | 22.8 | 18.1     | 14.4 | 11.4     | 9            | 6.3          | 5       | 3.5     | 1.8  | 1.7     | 1.4       | 1.4         | 1   |
| 125- 150 | 25    | 27.2 | 25.3      | 19.7 | 16       | 13.1 | 10.5     | 8.5          | 6            | 4.9     | 3.4     | 1.7  | 1.7     | 1.4       | 1.4         | 0.9 |
| 150- 175 | 25    | 20.2 | 19        | 15.9 | 13.8     | 11.8 | 9.9      | 7.9          | 5.9          | 4.8     | 3.3     | 1.7  | 1.4     | 1.4       | 1.3         | 0.7 |
| 175-200  | 25    | 15.9 | 14.9      | 13.1 | 11.7     | 10.3 | 8.6      | 7.3          | 5.5          | 4.2     | 3.1     | 1.6  | 1.4     | 1.3       | 1.3         | 0.7 |
| 200-225  | 25    | 13.5 | 12.4      | 11.1 | 10.1     | 8.8  | 7.7      | 6.2          | 5.1          | 3.7     | 2.8     | 1.4  | 1.3     | 1.3       | 1.3         | 0.6 |



Fig. A1.4. Detector opening layout to calculations of access dose rate – Lar EC, VA, Pixel, and VI removed.

|          |       | 340  | 340- | 350- | 365- | 380- | 405- | 430- | 480- | 530- | 580- | 605- | 630- | 645- | 660- | 670 |
|----------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-----|
| R/Z,     |       | 010  | 350  | 365  | 380  | 405  | 430  | 480  | 530  | 580  | 605  | 630  | 645  | 660  | 670  | 010 |
| cm       | dR\dZ | 0    | 10   | 15   | 15   | 25   | 25   | 50   | 50   | 50   | 25   | 25   | 15   | 15   | 10   | 0   |
| 0- 5     | 5     | 26.4 | 25   | 21.9 | 20.1 | 17.5 | 12.8 | 10.4 | 7.2  | 4.7  | 4.2  | 2    | 1.8  | 1.7  | 1.6  | 0.5 |
| 5- 10    | 5     | 26.5 | 25.1 | 22.1 | 20.3 | 17.5 | 12.8 | 10.4 | 7.2  | 4.7  | 4.2  | 2    | 1.8  | 1.7  | 1.6  | 0.5 |
| 10- 20   | 10    | 27   | 25.8 | 22.4 | 20.4 | 17.4 | 12.7 | 10.4 | 7.2  | 5    | 4.2  | 2    | 1.8  | 1.7  | 1.6  | 0.5 |
| 20- 30   | 10    | 28.4 | 27.3 | 23.7 | 20.7 | 17.2 | 13.1 | 10.1 | 7    | 5.1  | 4.2  | 2    | 1.8  | 1.7  | 1.6  | 0.5 |
| 30- 45   | 15    | 40   | 38.4 | 26   | 21   | 16.9 | 13.5 | 9.9  | 7.1  | 5.3  | 4.1  | 2    | 1.8  | 1.7  | 1.6  | 0.5 |
| 45- 60   | 15    | 47.7 | 46.2 | 26.9 | 20.8 | 16.7 | 13.7 | 9.4  | 7.2  | 5.3  | 3.9  | 2    | 1.8  | 1.7  | 1.6  | 0.5 |
| 60- 75   | 15    | 38.9 | 37.8 | 26   | 20.2 | 16.8 | 13.2 | 9.6  | 7.1  | 5.1  | 3.9  | 2    | 1.7  | 1.7  | 1.6  | 0.5 |
| 75- 95   | 20    | 33.8 | 32.5 | 24.3 | 19.8 | 15.6 | 12.7 | 9.6  | 6.9  | 5.2  | 3.9  | 1.9  | 1.7  | 1.7  | 1.4  | 0.5 |
| 95- 115  | 20    | 36.6 | 33.8 | 24.2 | 18.7 | 14.8 | 12.3 | 9    | 6.5  | 5    | 3.5  | 1.9  | 1.7  | 1.6  | 1.3  | 0.5 |
| 115- 125 | 10    | 36.3 | 33.4 | 22.9 | 17.6 | 14   | 11.3 | 8.6  | 6.4  | 5    | 3.6  | 1.8  | 1.7  | 1.6  | 1.3  | 0.5 |
| 125- 150 | 25    | 26.8 | 24.9 | 19.9 | 16.1 | 13   | 10.7 | 8.3  | 5.9  | 4.7  | 3.6  | 1.7  | 1.7  | 1.4  | 1.3  | 0.5 |
| 150- 175 | 25    | 20.1 | 18.8 | 16   | 13.7 | 11.5 | 9.4  | 7.7  | 5.7  | 4.6  | 3.4  | 1.7  | 1.6  | 1.3  | 1.2  | 0.5 |
| 175-200  | 25    | 15.7 | 14.4 | 13.1 | 11.6 | 10   | 8.3  | 7.1  | 5.3  | 4    | 3.1  | 1.7  | 1.4  | 1.2  | 1.2  | 0.5 |
| 200-225  | 25    | 12.1 | 11.2 | 10.5 | 9.7  | 8.2  | 7.1  | 6    | 4.8  | 3.7  | 2.9  | 1.4  | 1.3  | 1.2  | 1.2  | 0.5 |

Table A1.4 (continuation) Equivalent dose rate in the ID access scenario for T= 100 d, t= 5 d– Lar EC, VA, Pixel, and VI removed

Table A1.4 (continuation)

|          | _ ~   | 240  | 240  | 250  | 265  | 200  | 405  | 120  | 100  | 520  | 590  | 605  | 620  | 645  | 660  | 670 |
|----------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-----|
|          |       | 340  | 340- | 350- | 305- | 300- | 405- | 430- | 400- | 550- | 000- | 005- | 030- | 045- | 000- | 070 |
| R/Z,     |       |      | 350  | 365  | 380  | 405  | 430  | 480  | 530  | 580  | 605  | 630  | 645  | 660  | 670  |     |
| cm       | dR\dZ | 0    | 10   | 15   | 15   | 25   | 25   | 50   | 50   | 50   | 25   | 25   | 15   | 15   | 10   | 0   |
| 0- 5     | 5     | 8.5  | 8.1  | 7.3  | 6.8  | 5.6  | 4.1  | 3.4  | 2.2  | 1.4  | 0.9  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5 |
| 5- 10    | 5     | 8.5  | 8.1  | 7.3  | 6.8  | 5.6  | 4.1  | 3.3  | 2.2  | 1.4  | 0.9  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5 |
| 10- 20   | 10    | 8.7  | 8.3  | 7.5  | 6.8  | 5.6  | 4.1  | 3.3  | 2.2  | 1.4  | 0.9  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5 |
| 20- 30   | 10    | 9.3  | 8.9  | 8    | 6.9  | 5.6  | 4.2  | 3.3  | 2.2  | 1.6  | 0.9  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5 |
| 30- 45   | 15    | 14   | 13.4 | 8.7  | 7    | 5.6  | 4.3  | 3.2  | 2.2  | 1.6  | 0.9  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5 |
| 45- 60   | 15    | 17.1 | 16.5 | 9.3  | 7    | 5.6  | 4.3  | 3.2  | 2.2  | 1.6  | 0.9  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5 |
| 60- 75   | 15    | 13.8 | 13.5 | 8.8  | 6.8  | 5.5  | 4.1  | 3.3  | 2.1  | 1.5  | 0.9  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5 |
| 75-95    | 20    | 11.7 | 11.5 | 8.2  | 6.4  | 5.2  | 4.1  | 3.3  | 2.1  | 1.4  | 0.9  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5 |
| 95- 115  | 20    | 12.2 | 11.2 | 8.1  | 6    | 4.9  | 3.9  | 2.9  | 2.1  | 1.4  | 0.9  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5 |
| 115- 125 | 10    | 12.1 | 11.1 | 7.6  | 5.8  | 4.3  | 3.5  | 2.7  | 2.1  | 1.3  | 0.9  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5 |
| 125- 150 | 25    | 9.1  | 8.1  | 6.4  | 5.3  | 4    | 3.4  | 2.6  | 1.9  | 1.1  | 0.9  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5 |
| 150- 175 | 25    | 6.6  | 6.1  | 5    | 4.3  | 3.5  | 3.1  | 2.5  | 1.7  | 1.1  | 0.9  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5 |
| 175-200  | 25    | 5.1  | 4.8  | 3.9  | 3.6  | 3.2  | 2.6  | 2.3  | 1.5  | 1.1  | 0.9  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5 |
| 200-225  | 25    | 4.1  | 3.7  | 3.4  | 3    | 2.6  | 2.4  | 2    | 1.2  | 1    | 0.8  | 0.5  | 0.5  | 0.5  | 0.5  | 0.5 |

Equivalent dose rate in the ID access scenario for T= 100 d, t=100d– Lar EC, VA, Pixel, and VI removed

Table A1.4 (continuation)

|          |       | 340  | 340- | 350- | 365- | 380- | 405- | 430- | 480- | 530- | 580- | 605- | 630- | 645- | 660- | 670 |
|----------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-----|
| R/Z,     |       |      | 350  | 365  | 380  | 405  | 430  | 480  | 530  | 580  | 605  | 630  | 645  | 660  | 670  |     |
| cm       | dR\dZ | 0    | 10   | 15   | 15   | 25   | 25   | 50   | 50   | 50   | 25   | 25   | 15   | 15   | 10   | 0   |
| 0- 5     | 5     | 43.7 | 41   | 37   | 33.8 | 29   | 21.7 | 17.5 | 12.1 | 8.2  | 6.4  | 3.5  | 3.2  | 2.7  | 2.6  | 1.5 |
| 5- 10    | 5     | 43.7 | 41.3 | 37.2 | 33.8 | 29   | 21.7 | 17.5 | 12.1 | 8.2  | 6.4  | 3.5  | 3    | 2.7  | 2.6  | 1.5 |
| 10- 20   | 10    | 44.7 | 42.4 | 38   | 34   | 28.8 | 21.7 | 17.4 | 12.1 | 8.4  | 6.4  | 3.5  | 3    | 2.7  | 2.6  | 1.5 |
| 20- 30   | 10    | 47.2 | 45.4 | 39.6 | 34.3 | 28.8 | 22.1 | 17.1 | 12.1 | 8.7  | 6.4  | 3.5  | 3    | 2.7  | 2.6  | 1.5 |
| 30- 45   | 15    | 67   | 64.6 | 43.6 | 35   | 28.2 | 22.5 | 16.7 | 12.1 | 8.8  | 6.3  | 3.4  | 2.9  | 2.7  | 2.5  | 1.4 |
| 45- 60   | 15    | 81.8 | 78.7 | 46   | 35   | 27.8 | 22.8 | 16.3 | 12.2 | 8.9  | 6.4  | 3.4  | 2.8  | 2.7  | 2.5  | 1.1 |
| 60- 75   | 15    | 67.2 | 65   | 44.3 | 34.2 | 27.6 | 22   | 16.2 | 11.7 | 9    | 6.5  | 3.4  | 2.8  | 2.7  | 2.5  | 1.1 |
| 75-95    | 20    | 58   | 56   | 41.2 | 33.1 | 26.4 | 21.1 | 16.1 | 11.4 | 8.8  | 6.3  | 3.4  | 2.8  | 2.7  | 2.5  | 1.1 |
| 95-115   | 20    | 61.1 | 56.4 | 40.3 | 31.3 | 24.8 | 20.1 | 15.1 | 11   | 8.3  | 6.3  | 3.4  | 2.7  | 2.7  | 2.5  | 1.1 |
| 115- 125 | 10    | 60.3 | 55.6 | 38.6 | 29.5 | 23.8 | 18.8 | 14.6 | 10.4 | 8    | 6.2  | 3.2  | 2.7  | 2.5  | 2.5  | 1.1 |
| 125- 150 | 25    | 46.2 | 42.5 | 33.2 | 27.1 | 21.9 | 17.7 | 13.9 | 9.8  | 7.8  | 6.2  | 2.9  | 2.7  | 2.5  | 2.5  | 1   |
| 150- 175 | 25    | 35   | 32.2 | 27.1 | 23   | 19.2 | 16.1 | 12.7 | 9.8  | 7.4  | 6.1  | 2.8  | 2.6  | 2.5  | 2.5  | 1   |
| 175-200  | 25    | 26.8 | 24.8 | 22.4 | 19.9 | 17   | 14.3 | 11.8 | 9    | 6.8  | 5.6  | 2.7  | 2.5  | 2.5  | 2.4  | 1   |
| 200-225  | 25    | 21.9 | 20   | 18.1 | 16.8 | 14.3 | 12.3 | 10   | 8.1  | 6.5  | 4.9  | 2.6  | 2.5  | 2.4  | 1.9  | 1   |

Equivalent dose rate in the ID access scenario for T= 10y, t= 5 d– Lar EC, VA, Pixel, and VI removed

Table A1.4 (continuation)

|          |       | 340  | 340- | 350- | 365- | 380- | 405- | 430- | 480- | 530- | 580- | 605- | 630- | 645- | 660- | 670 |
|----------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-----|
| R/Z,     |       |      | 350  | 365  | 380  | 405  | 430  | 480  | 530  | 580  | 605  | 630  | 645  | 660  | 670  |     |
| cm       | dR\dZ | 0    | 10   | 15   | 15   | 25   | 25   | 50   | 50   | 50   | 25   | 25   | 15   | 15   | 10   | 0   |
| 0- 5     | 5     | 23.2 | 22.6 | 20.9 | 18.7 | 15.6 | 12.3 | 9.4  | 6.7  | 4.5  | 3.6  | 1.4  | 1.4  | 1.3  | 1.3  | 0.9 |
| 5- 10    | 5     | 23.6 | 22.6 | 21   | 18.9 | 15.6 | 12.3 | 9.4  | 6.7  | 4.6  | 3.6  | 1.4  | 1.4  | 1.3  | 1.3  | 0.9 |
| 10- 20   | 10    | 24.1 | 23.4 | 21.5 | 18.9 | 15.5 | 12.3 | 9.4  | 6.7  | 4.6  | 3.6  | 1.4  | 1.4  | 1.3  | 1.3  | 0.9 |
| 20- 30   | 10    | 25.6 | 25   | 22.5 | 19.1 | 15.5 | 12.4 | 9.3  | 6.7  | 4.7  | 3.6  | 1.4  | 1.4  | 1.3  | 1.3  | 0.9 |
| 30- 45   | 15    | 37.4 | 36.5 | 24.6 | 19.3 | 15.5 | 12.5 | 9.2  | 6.7  | 4.8  | 3.6  | 1.4  | 1.4  | 1.3  | 1.3  | 0.9 |
| 45- 60   | 15    | 46.9 | 45.5 | 25.8 | 19.4 | 15.4 | 12.5 | 9.1  | 6.6  | 4.8  | 3.6  | 1.4  | 1.3  | 1.3  | 1.3  | 0.9 |
| 60- 75   | 15    | 38.5 | 37.7 | 24.9 | 19   | 15.3 | 12.2 | 9.2  | 6.6  | 4.9  | 3.6  | 1.4  | 1.3  | 1.3  | 1.2  | 0.9 |
| 75- 95   | 20    | 33   | 32.2 | 23.1 | 18.4 | 14.7 | 11.6 | 8.8  | 6.3  | 4.8  | 3.5  | 1.4  | 1.3  | 1.3  | 1.2  | 0.9 |
| 95- 115  | 20    | 33.8 | 31.4 | 22.6 | 17.4 | 13.8 | 11   | 8.2  | 6.2  | 4.7  | 3.1  | 1.4  | 1.3  | 1.3  | 1.2  | 0.9 |
| 115- 125 | 10    | 33.5 | 30.5 | 21.2 | 16.6 | 13   | 10.2 | 8.1  | 5.7  | 4.5  | 3.1  | 1.4  | 1.3  | 1.2  | 1.2  | 0.9 |
| 125- 150 | 25    | 25.8 | 23.9 | 18.4 | 14.8 | 12   | 9.5  | 7.7  | 5.4  | 4.4  | 3    | 1.3  | 1.3  | 1.2  | 1.2  | 0.8 |
| 150- 175 | 25    | 19.1 | 17.9 | 14.8 | 12.8 | 10.8 | 9    | 7.2  | 5.4  | 4.4  | 2.9  | 1.3  | 1.2  | 1.2  | 1.1  | 0.6 |
| 175- 200 | 25    | 15   | 14   | 12.3 | 10.9 | 9.5  | 7.9  | 6.7  | 5    | 3.8  | 2.7  | 1.3  | 1.2  | 1.1  | 1.1  | 0.6 |
| 200-225  | 25    | 12.7 | 11.6 | 10.4 | 9.4  | 8.1  | 7.1  | 5.6  | 4.6  | 3.3  | 2.5  | 1.2  | 1.1  | 1.1  | 1.1  | 0.5 |

Equivalent dose rate in the ID access scenario for T= 10y, t= 100 d– Lar EC, VA, Pixel, and VI removed

Addendum 2



Fig. A2.1 Sketch of the VA Beam pipe section.

Table A2.1

| Equivalent dose rate induced by high-energy hadrons from steel LAI beam Pipe for 1 – 1000, t-50 |       |        |        |        |        |        |        |        |        |        |        |        |        |       |
|-------------------------------------------------------------------------------------------------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|
| R/Z,<br>cm                                                                                      | 350   | 365    | 370    | 385    | 415    | 450    | 500    | 600    | 700    | 750    | 800    | 850    | 870    | 880   |
| 0                                                                                               | 357.8 | 3406.9 |        |        |        |        |        |        |        |        |        |        | 2540.6 | 414.8 |
| 5                                                                                               | 342.6 | 3305.9 | 2502.6 | 2566.8 | 2100.6 | 2669.3 | 4926.9 | 3712.1 | 2852.9 | 2533.3 | 2513.5 | 1764.9 | 2432.2 | 380.1 |
| 7                                                                                               | 329.6 | 1589.9 | 1808.1 | 1804.0 | 1406.1 | 1753.6 | 3111.5 | 2395.1 | 1848.8 | 1645.4 | 1615.9 | 1230.7 | 1144.1 | 352.8 |
| 10                                                                                              | 306.1 | 939.4  | 1185.2 | 1223.6 | 960.4  | 1196.1 | 2024.4 | 1600.2 | 1240.4 | 1105.1 | 1070.6 | 842.0  | 657.9  | 309.2 |
| 15                                                                                              | 264.6 | 564.3  | 677.4  | 749.7  | 641.2  | 793.4  | 1258.5 | 1033.1 | 805.8  | 718.3  | 682.8  | 538.9  | 392.5  | 246.4 |
| 20                                                                                              | 227.2 | 396.9  | 454.4  | 517.8  | 485.3  | 595.3  | 895.8  | 759.4  | 595.9  | 531.2  | 496.8  | 388.0  | 281.7  | 201.3 |
| 25                                                                                              | 196.5 | 302.8  | 336.8  | 387.6  | 390.5  | 475.6  | 685.3  | 597.2  | 471.3  | 420.1  | 387.5  | 299.1  | 220.5  | 169.3 |
| 50                                                                                              | 111.8 | 136.1  | 143.8  | 163.4  | 190.9  | 228.4  | 288.7  | 275.6  | 223.5  | 199.0  | 175.1  | 132.6  | 107.2  | 93.9  |
| 75                                                                                              | 77.3  | 88.1   | 91.7   | 102.1  | 120.7  | 142.1  | 169.3  | 169.1  | 140.7  | 125.2  | 108.0  | 83.3   | 71.1   | 64.9  |
| 100                                                                                             | 58.8  | 65.1   | 67.2   | 73.5   | 85.6   | 98.8   | 114.1  | 116.7  | 99.4   | 88.6   | 76.1   | 60.1   | 53.0   | 49.4  |
| 125                                                                                             | 47.2  | 51.3   | 52.6   | 56.8   | 64.8   | 73.5   | 83.2   | 86.1   | 74.8   | 66.9   | 57.7   | 46.7   | 42.0   | 39.7  |
| 150                                                                                             | 39.2  | 42.0   | 42.9   | 45.7   | 51.3   | 57.2   | 63.7   | 66.4   | 58.6   | 52.7   | 45.8   | 37.9   | 34.6   | 33.0  |
| 175                                                                                             | 33.2  | 35.2   | 35.9   | 37.9   | 41.9   | 46.0   | 50.7   | 52.8   | 47.3   | 42.9   | 37.6   | 31.6   | 29.2   | 28.0  |
| 200                                                                                             | 28.7  | 30.1   | 30.6   | 32.1   | 35.0   | 38.0   | 41.4   | 43.1   | 39.1   | 35.6   | 31.5   | 27.0   | 25.1   | 24.2  |
| 225                                                                                             | 25.0  | 26.1   | 26.5   | 27.6   | 29.8   | 32.0   | 34.5   | 35.9   | 32.8   | 30.1   | 26.9   | 23.4   | 21.9   | 21.2  |

Equivalent dose rate induced by high-energy hadrons from steel LAr Beam Pipe for T= 100d, t=5d

Table A2.1 (continuation)

|            |       |        |        |        | <u> </u> |        |        |        | ••••   |        |        | ,.     |        |       |
|------------|-------|--------|--------|--------|----------|--------|--------|--------|--------|--------|--------|--------|--------|-------|
| R/Z,<br>cm | 350   | 365    | 370    | 385    | 415      | 450    | 500    | 600    | 700    | 750    | 800    | 850    | 870    | 880   |
| 0          | 402.0 | 3824.9 |        |        |          |        |        |        |        |        |        |        | 2858.0 | 466.6 |
| 5          | 384.9 | 3711.8 | 2810.0 | 2879.9 | 2364.8   | 3008.9 | 5571.7 | 4182.9 | 3209.7 | 2850.7 | 2827.7 | 1984.6 | 2735.9 | 427.6 |
| 7          | 370.3 | 1785.3 | 2030.4 | 2024.6 | 1582.7   | 1976.9 | 3518.2 | 2698.8 | 2080.0 | 1851.5 | 1817.9 | 1384.0 | 1287.0 | 396.9 |
| 10         | 344.0 | 1055.0 | 1331.1 | 1373.6 | 1080.8   | 1348.6 | 2288.8 | 1803.1 | 1395.5 | 1243.5 | 1204.5 | 946.9  | 740.0  | 347.8 |
| 15         | 297.3 | 633.9  | 760.9  | 841.9  | 721.6    | 894.6  | 1422.5 | 1164.1 | 906.6  | 808.4  | 768.1  | 606.1  | 441.5  | 277.2 |
| 20         | 255.4 | 445.9  | 510.5  | 581.7  | 546.2    | 671.3  | 1012.3 | 855.8  | 670.4  | 597.8  | 559.0  | 436.4  | 316.8  | 226.4 |
| 25         | 220.8 | 340.3  | 378.5  | 435.6  | 439.6    | 536.4  | 774.3  | 673.0  | 530.3  | 472.8  | 436.0  | 336.5  | 248.0  | 190.4 |
| 50         | 125.8 | 153.1  | 161.8  | 183.9  | 215.0    | 257.6  | 326.0  | 310.6  | 251.5  | 223.9  | 197.1  | 149.2  | 120.6  | 105.7 |
| 75         | 87.0  | 99.2   | 103.3  | 114.9  | 136.0    | 160.2  | 191.1  | 190.6  | 158.4  | 140.9  | 121.6  | 93.7   | 80.0   | 73.1  |
| 100        | 66.2  | 73.3   | 75.7   | 82.8   | 96.4     | 111.4  | 128.7  | 131.5  | 111.9  | 99.7   | 85.6   | 67.7   | 59.6   | 55.6  |
| 125        | 53.2  | 57.8   | 59.3   | 64.0   | 73.0     | 82.9   | 93.8   | 97.0   | 84.2   | 75.3   | 64.9   | 52.5   | 47.3   | 44.7  |
| 150        | 44.1  | 47.3   | 48.3   | 51.5   | 57.8     | 64.5   | 71.9   | 74.8   | 66.0   | 59.4   | 51.6   | 42.6   | 38.9   | 37.1  |
| 175        | 37.4  | 39.7   | 40.4   | 42.7   | 47.2     | 51.9   | 57.1   | 59.5   | 53.3   | 48.3   | 42.3   | 35.6   | 32.9   | 31.5  |
| 200        | 32.3  | 33.9   | 34.5   | 36.2   | 39.4     | 42.8   | 46.6   | 48.6   | 44.0   | 40.1   | 35.5   | 30.4   | 28.3   | 27.3  |
| 225        | 28.2  | 29.5   | 29.9   | 31.1   | 33.5     | 36.1   | 38.9   | 40.4   | 37.0   | 33.9   | 30.3   | 26.3   | 24.7   | 23.9  |

Equivalent dose rate induced by high-energy hadrons from steel LAr Beam Pipe for T= 10y, t=5d
| R/Z,<br>cm | 350  | 365   | 370   | 385   | 415   | 450   | 500   | 600   | 700   | 750   | 800   | 850   | 870   | 880  |
|------------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
| 0          | 60.8 | 568.8 |       |       |       |       |       |       |       |       |       |       | 440.7 | 72.1 |
| 5          | 58.2 | 552.1 | 421.6 | 436.7 | 359.9 | 466.2 | 901.6 | 666.9 | 504.4 | 443.1 | 438.4 | 306.8 | 421.6 | 66.1 |
| 7          | 56.0 | 267.0 | 305.5 | 307.2 | 241.3 | 306.9 | 568.8 | 430.2 | 326.8 | 287.9 | 281.9 | 214.0 | 198.5 | 61.3 |
| 10         | 52.1 | 158.6 | 200.9 | 208.6 | 165.1 | 209.9 | 369.6 | 287.4 | 219.3 | 193.5 | 186.8 | 146.5 | 114.2 | 53.8 |
| 15         | 45.2 | 95.9  | 115.2 | 128.1 | 110.6 | 139.6 | 229.4 | 185.5 | 142.4 | 125.9 | 119.2 | 93.8  | 68.3  | 42.9 |
| 20         | 38.9 | 67.7  | 77.5  | 88.7  | 84.0  | 105.0 | 163.0 | 136.4 | 105.3 | 93.2  | 86.8  | 67.6  | 49.0  | 35.1 |
| 25         | 33.7 | 51.8  | 57.7  | 66.5  | 67.7  | 84.1  | 124.5 | 107.3 | 83.3  | 73.7  | 67.7  | 52.2  | 38.4  | 29.5 |
| 50         | 19.4 | 23.6  | 24.9  | 28.4  | 33.4  | 40.6  | 52.1  | 49.5  | 39.6  | 35.0  | 30.7  | 23.2  | 18.8  | 16.4 |
| 75         | 13.5 | 15.4  | 16.0  | 17.9  | 21.3  | 25.3  | 30.4  | 30.3  | 24.9  | 22.1  | 19.0  | 14.6  | 12.5  | 11.4 |
| 100        | 10.3 | 11.4  | 11.8  | 12.9  | 15.1  | 17.6  | 20.5  | 20.9  | 17.6  | 15.7  | 13.4  | 10.6  | 9.3   | 8.7  |
| 125        | 8.3  | 9.1   | 9.3   | 10.0  | 11.5  | 13.1  | 14.9  | 15.4  | 13.3  | 11.8  | 10.2  | 8.2   | 7.4   | 7.0  |
| 150        | 6.9  | 7.4   | 7.6   | 8.1   | 9.1   | 10.2  | 11.4  | 11.9  | 10.4  | 9.3   | 8.1   | 6.7   | 6.1   | 5.8  |
| 175        | 5.9  | 6.2   | 6.4   | 6.7   | 7.4   | 8.2   | 9.0   | 9.4   | 8.4   | 7.6   | 6.6   | 5.6   | 5.2   | 5.0  |
| 200        | 5.1  | 5.3   | 5.4   | 5.7   | 6.2   | 6.8   | 7.4   | 7.7   | 6.9   | 6.3   | 5.6   | 4.8   | 4.4   | 4.3  |
| 225        | 4.4  | 4.6   | 4.7   | 4.9   | 5.3   | 5.7   | 6.2   | 6.4   | 5.8   | 5.3   | 4.8   | 4.1   | 3.9   | 3.8  |

Table A2.1 (continuation) Equivalent dose rate induced by high-energy hadrons from steel LAr Beam Pipe for T= 100d, t=100d

Table A2.1 (continuation)

|            |      |       |       |       | - )   | 07    |        |       | -     |       |       | - <b>j</b> , - |       |       |
|------------|------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|----------------|-------|-------|
| R/Z,<br>cm | 350  | 365   | 370   | 385   | 415   | 450   | 500    | 600   | 700   | 750   | 800   | 850            | 870   | 880   |
| 0          | 91.8 | 862.4 |       |       |       |       |        |       |       |       |       |                | 664.8 | 108.6 |
| 5          | 87.9 | 837.2 | 637.5 | 657.2 | 543.3 | 705.1 | 1350.6 | 995.2 | 755.4 | 666.1 | 660.2 | 462.0          | 636.0 | 99.6  |
| 7          | 84.6 | 404.2 | 461.6 | 462.5 | 364.1 | 463.8 | 852.0  | 641.9 | 489.4 | 432.8 | 424.4 | 322.2          | 299.3 | 92.4  |
| 10         | 78.7 | 239.9 | 303.4 | 314.2 | 249.1 | 316.9 | 553.8  | 428.8 | 328.3 | 290.8 | 281.3 | 220.5          | 172.2 | 81.0  |
| 15         | 68.1 | 144.7 | 173.9 | 193.0 | 166.8 | 210.6 | 343.7  | 276.9 | 213.3 | 189.2 | 179.4 | 141.2          | 102.8 | 64.6  |
| 20         | 58.7 | 102.1 | 117.0 | 133.6 | 126.5 | 158.3 | 244.2  | 203.6 | 157.7 | 140.0 | 130.6 | 101.7          | 73.8  | 52.8  |
| 25         | 50.8 | 78.2  | 86.9  | 100.2 | 102.1 | 126.6 | 186.6  | 160.1 | 124.8 | 110.8 | 101.9 | 78.5           | 57.8  | 44.4  |
| 50         | 29.2 | 35.5  | 37.5  | 42.8  | 50.3  | 61.0  | 78.1   | 73.9  | 59.2  | 52.6  | 46.1  | 34.9           | 28.2  | 24.7  |
| 75         | 20.3 | 23.2  | 24.1  | 26.9  | 32.0  | 38.0  | 45.6   | 45.3  | 37.3  | 33.1  | 28.5  | 22.0           | 18.7  | 17.1  |
| 100        | 15.5 | 17.2  | 17.8  | 19.5  | 22.7  | 26.4  | 30.7   | 31.3  | 26.4  | 23.5  | 20.1  | 15.9           | 14.0  | 13.1  |
| 125        | 12.5 | 13.6  | 14.0  | 15.1  | 17.3  | 19.6  | 22.3   | 23.0  | 19.9  | 17.7  | 15.3  | 12.3           | 11.1  | 10.5  |
| 150        | 10.4 | 11.1  | 11.4  | 12.2  | 13.7  | 15.3  | 17.1   | 17.8  | 15.6  | 14.0  | 12.1  | 10.0           | 9.2   | 8.7   |
| 175        | 8.8  | 9.4   | 9.5   | 10.1  | 11.2  | 12.3  | 13.6   | 14.1  | 12.6  | 11.4  | 10.0  | 8.4            | 7.7   | 7.4   |
| 200        | 7.6  | 8.0   | 8.2   | 8.5   | 9.3   | 10.1  | 11.1   | 11.5  | 10.4  | 9.5   | 8.4   | 7.2            | 6.7   | 6.4   |
| 225        | 6.7  | 7.0   | 7.1   | 7.4   | 7.9   | 8.5   | 9.2    | 9.6   | 8.7   | 8.0   | 7.2   | 6.2            | 5.8   | 5.6   |

Equivalent dose rate induced by high-energy hadrons from steel LAr Beam Pipe for T= 10y, t=100d

Table A2.2

|            | ĽЧu  | valentu |      | induced | Dy 1000- | епегуу п | leutions |       |      | eannip |      | ' 100u, t | -Ju  |     |
|------------|------|---------|------|---------|----------|----------|----------|-------|------|--------|------|-----------|------|-----|
| R/Z,<br>cm | 350  | 365     | 370  | 385     | 415      | 450      | 500      | 600   | 700  | 750    | 800  | 850       | 870  | 880 |
| 0          | 10.1 | 75.8    |      |         |          |          |          |       |      |        |      |           | 50.1 | 8.3 |
| 5          | 9.8  | 76.8    | 66.0 | 62.0    | 39.2     | 83.4     | 322.4    | 148.9 | 61.3 | 55.1   | 51.5 | 30.4      | 52.6 | 7.7 |
| 7          | 9.4  | 40.1    | 52.2 | 46.1    | 28.5     | 57.5     | 200.0    | 94.8  | 40.0 | 35.6   | 33.0 | 21.7      | 23.1 | 7.1 |
| 10         | 8.9  | 25.8    | 36.1 | 33.0    | 21.5     | 41.6     | 128.0    | 63.0  | 27.3 | 24.1   | 22.0 | 15.3      | 12.9 | 6.2 |
| 15         | 7.9  | 16.5    | 20.6 | 21.0    | 16.2     | 29.7     | 77.6     | 40.7  | 18.3 | 15.9   | 14.2 | 10.2      | 7.7  | 5.0 |
| 20         | 6.9  | 11.9    | 13.8 | 14.8    | 13.4     | 23.4     | 53.8     | 30.0  | 13.9 | 11.9   | 10.5 | 7.6       | 5.6  | 4.1 |
| 25         | 6.1  | 9.2     | 10.3 | 11.4    | 11.6     | 19.3     | 40.2     | 23.7  | 11.3 | 9.6    | 8.3  | 6.0       | 4.5  | 3.5 |
| 50         | 3.8  | 4.5     | 4.8  | 5.5     | 6.9      | 9.9      | 15.2     | 11.1  | 6.0  | 4.9    | 4.0  | 2.9       | 2.4  | 2.1 |
| 75         | 2.8  | 3.2     | 3.3  | 3.7     | 4.7      | 6.2      | 8.3      | 6.8   | 4.1  | 3.3    | 2.7  | 2.0       | 1.7  | 1.6 |
| 100        | 2.2  | 2.5     | 2.6  | 2.8     | 3.5      | 4.3      | 5.3      | 4.7   | 3.0  | 2.5    | 2.0  | 1.5       | 1.4  | 1.3 |
| 125        | 1.8  | 2.0     | 2.1  | 2.2     | 2.7      | 3.1      | 3.7      | 3.4   | 2.4  | 2.0    | 1.6  | 1.3       | 1.1  | 1.1 |
| 150        | 1.5  | 1.7     | 1.7  | 1.8     | 2.1      | 2.4      | 2.7      | 2.6   | 1.9  | 1.6    | 1.3  | 1.1       | 1.0  | 0.9 |
| 175        | 1.3  | 1.4     | 1.4  | 1.5     | 1.7      | 1.9      | 2.1      | 2.0   | 1.6  | 1.3    | 1.1  | 0.9       | 0.9  | 0.8 |
| 200        | 1.1  | 1.2     | 1.2  | 1.3     | 1.4      | 1.6      | 1.7      | 1.7   | 1.3  | 1.1    | 1.0  | 0.8       | 0.8  | 0.7 |
| 225        | 1.0  | 1.0     | 1.1  | 1.1     | 1.2      | 1.3      | 1.4      | 1.4   | 1.1  | 1.0    | 0.9  | 0.7       | 0.7  | 0.7 |

Equivalent dose rate induced by low-energy neutrons from steel LAr Beam Pipe for T= 100d, t=5d

Table A2.2 (continuation)

| R/Z,<br>cm | 350  | 365   | 370   | 385   | 415  | 450   | 500   | 600   | 700  | 750  | 800  | 850  | 870  | 880  |
|------------|------|-------|-------|-------|------|-------|-------|-------|------|------|------|------|------|------|
| 0          | 20.5 | 147.1 |       |       |      |       |       |       |      |      |      |      | 67.0 | 11.2 |
| 5          | 19.8 | 149.7 | 144.8 | 133.4 | 89.4 | 143.6 | 425.4 | 187.9 | 81.7 | 73.4 | 68.5 | 40.7 | 70.5 | 10.2 |
| 7          | 19.1 | 82.4  | 117.8 | 101.9 | 62.2 | 96.6  | 263.9 | 120.0 | 53.2 | 47.5 | 43.9 | 29.1 | 31.0 | 9.5  |
| 10         | 18.0 | 55.1  | 82.3  | 73.8  | 44.6 | 68.2  | 168.9 | 80.0  | 36.3 | 32.1 | 29.3 | 20.5 | 17.3 | 8.3  |
| 15         | 15.8 | 35.4  | 45.8  | 46.1  | 31.8 | 47.2  | 102.5 | 51.8  | 24.3 | 21.1 | 19.0 | 13.6 | 10.3 | 6.7  |
| 20         | 13.7 | 25.0  | 29.5  | 31.5  | 25.3 | 36.4  | 71.3  | 38.3  | 18.5 | 15.9 | 14.0 | 10.1 | 7.5  | 5.5  |
| 25         | 11.9 | 18.9  | 21.3  | 23.3  | 21.1 | 29.6  | 53.4  | 30.4  | 15.0 | 12.7 | 11.1 | 8.0  | 6.0  | 4.7  |
| 50         | 6.8  | 8.2   | 8.7   | 9.8   | 11.4 | 14.7  | 20.5  | 14.4  | 7.9  | 6.5  | 5.4  | 3.9  | 3.2  | 2.9  |
| 75         | 4.6  | 5.3   | 5.5   | 6.2   | 7.4  | 9.1   | 11.3  | 8.9   | 5.4  | 4.4  | 3.6  | 2.7  | 2.3  | 2.1  |
| 100        | 3.5  | 3.9   | 4.0   | 4.4   | 5.2  | 6.2   | 7.3   | 6.2   | 4.0  | 3.3  | 2.7  | 2.1  | 1.8  | 1.7  |
| 125        | 2.8  | 3.1   | 3.2   | 3.4   | 3.9  | 4.5   | 5.1   | 4.5   | 3.2  | 2.6  | 2.1  | 1.7  | 1.5  | 1.4  |
| 150        | 2.3  | 2.5   | 2.6   | 2.7   | 3.1  | 3.5   | 3.8   | 3.5   | 2.6  | 2.2  | 1.8  | 1.4  | 1.3  | 1.3  |
| 175        | 2.0  | 2.1   | 2.1   | 2.2   | 2.5  | 2.7   | 3.0   | 2.8   | 2.1  | 1.8  | 1.5  | 1.3  | 1.2  | 1.1  |
| 200        | 1.7  | 1.8   | 1.8   | 1.9   | 2.0  | 2.2   | 2.4   | 2.3   | 1.8  | 1.5  | 1.3  | 1.1  | 1.0  | 1.0  |
| 225        | 1.4  | 1.5   | 1.5   | 1.6   | 1.7  | 1.8   | 1.9   | 1.9   | 1.5  | 1.3  | 1.2  | 1.0  | 0.9  | 0.9  |

Equivalent dose rate induced by low-energy neutrons from steel LAr Beam Pipe for T= 10y, t=5d

| R/Z,<br>cm | 350 | 365  | 370  | 385  | 415  | 450  | 500   | 600  | 700  | 750  | 800  | 850  | 870  | 880 |
|------------|-----|------|------|------|------|------|-------|------|------|------|------|------|------|-----|
| 0          | 4.8 | 35.8 |      |      |      |      |       |      |      |      |      |      | 22.0 | 3.7 |
| 5          | 4.7 | 36.3 | 32.1 | 30.0 | 19.3 | 38.4 | 140.3 | 64.3 | 26.8 | 24.1 | 22.6 | 13.3 | 23.1 | 3.4 |
| 7          | 4.5 | 19.2 | 25.6 | 22.5 | 13.8 | 26.3 | 87.0  | 41.0 | 17.5 | 15.6 | 14.4 | 9.5  | 10.1 | 3.1 |
| 10         | 4.2 | 12.5 | 17.7 | 16.1 | 10.3 | 18.9 | 55.7  | 27.3 | 11.9 | 10.5 | 9.6  | 6.7  | 5.7  | 2.7 |
| 15         | 3.7 | 8.0  | 10.1 | 10.2 | 7.7  | 13.4 | 33.8  | 17.6 | 8.0  | 7.0  | 6.2  | 4.5  | 3.4  | 2.2 |
| 20         | 3.3 | 5.7  | 6.7  | 7.2  | 6.3  | 10.5 | 23.4  | 13.0 | 6.1  | 5.2  | 4.6  | 3.3  | 2.5  | 1.8 |
| 25         | 2.9 | 4.4  | 4.9  | 5.4  | 5.4  | 8.7  | 17.5  | 10.3 | 4.9  | 4.2  | 3.6  | 2.6  | 2.0  | 1.5 |
| 50         | 1.7 | 2.1  | 2.2  | 2.5  | 3.1  | 4.4  | 6.7   | 4.8  | 2.6  | 2.1  | 1.8  | 1.3  | 1.1  | 0.9 |
| 75         | 1.3 | 1.5  | 1.5  | 1.7  | 2.1  | 2.8  | 3.6   | 3.0  | 1.8  | 1.4  | 1.2  | 0.9  | 0.8  | 0.7 |
| 100        | 1.0 | 1.1  | 1.2  | 1.3  | 1.5  | 1.9  | 2.3   | 2.0  | 1.3  | 1.1  | 0.9  | 0.7  | 0.6  | 0.6 |
| 125        | 0.8 | 0.9  | 0.9  | 1.0  | 1.2  | 1.4  | 1.6   | 1.5  | 1.0  | 0.9  | 0.7  | 0.6  | 0.5  | 0.5 |
| 150        | 0.7 | 0.7  | 0.8  | 0.8  | 0.9  | 1.1  | 1.2   | 1.1  | 0.8  | 0.7  | 0.6  | 0.5  | 0.4  | 0.4 |
| 175        | 0.6 | 0.6  | 0.6  | 0.7  | 0.8  | 0.8  | 0.9   | 0.9  | 0.7  | 0.6  | 0.5  | 0.4  | 0.4  | 0.4 |
| 200        | 0.5 | 0.5  | 0.5  | 0.6  | 0.6  | 0.7  | 0.8   | 0.7  | 0.6  | 0.5  | 0.4  | 0.4  | 0.3  | 0.3 |
| 225        | 0.4 | 0.5  | 0.5  | 0.5  | 0.5  | 0.6  | 0.6   | 0.6  | 0.5  | 0.4  | 0.4  | 0.3  | 0.3  | 0.3 |

Table A2.2 (continuation) Equivalent dose rate induced by low-energy neutrons from steel LAr Beam Pipe for T= 100d, t=100d

| R/Z,<br>cm | 350  | 365   | 370   | 385  | 415  | 450  | 500   | 600  | 700  | 750  | 800  | 850  | 870  | 880 |
|------------|------|-------|-------|------|------|------|-------|------|------|------|------|------|------|-----|
| 0          | 14.1 | 99.2  |       |      |      |      |       |      |      |      |      |      | 33.9 | 5.7 |
| 5          | 13.6 | 101.2 | 103.8 | 94.8 | 65.2 | 90.1 | 212.3 | 89.2 | 41.3 | 37.1 | 34.6 | 20.6 | 35.8 | 5.2 |
| 7          | 13.2 | 57.3  | 85.5  | 73.3 | 44.5 | 59.6 | 131.7 | 57.1 | 26.9 | 24.0 | 22.2 | 14.8 | 15.7 | 4.8 |
| 10         | 12.4 | 39.0  | 60.0  | 53.3 | 31.2 | 41.3 | 84.3  | 38.2 | 18.3 | 16.2 | 14.8 | 10.4 | 8.8  | 4.2 |
| 15         | 10.8 | 25.1  | 33.0  | 33.0 | 21.6 | 27.9 | 51.3  | 24.8 | 12.3 | 10.7 | 9.6  | 6.9  | 5.2  | 3.4 |
| 20         | 9.4  | 17.6  | 21.0  | 22.2 | 16.8 | 21.2 | 35.8  | 18.4 | 9.3  | 8.0  | 7.1  | 5.1  | 3.8  | 2.8 |
| 25         | 8.1  | 13.1  | 14.9  | 16.2 | 13.7 | 17.1 | 26.8  | 14.7 | 7.6  | 6.4  | 5.6  | 4.1  | 3.0  | 2.4 |
| 50         | 4.4  | 5.3   | 5.6   | 6.3  | 6.9  | 8.2  | 10.5  | 7.1  | 4.0  | 3.3  | 2.7  | 2.0  | 1.6  | 1.5 |
| 75         | 2.9  | 3.3   | 3.4   | 3.7  | 4.3  | 5.0  | 5.8   | 4.4  | 2.7  | 2.2  | 1.8  | 1.4  | 1.2  | 1.1 |
| 100        | 2.1  | 2.3   | 2.4   | 2.6  | 3.0  | 3.4  | 3.8   | 3.1  | 2.0  | 1.7  | 1.4  | 1.1  | 0.9  | 0.9 |
| 125        | 1.6  | 1.8   | 1.8   | 2.0  | 2.2  | 2.5  | 2.7   | 2.3  | 1.6  | 1.3  | 1.1  | 0.9  | 0.8  | 0.7 |
| 150        | 1.3  | 1.4   | 1.4   | 1.5  | 1.7  | 1.9  | 2.0   | 1.8  | 1.3  | 1.1  | 0.9  | 0.7  | 0.7  | 0.6 |
| 175        | 1.1  | 1.2   | 1.2   | 1.2  | 1.4  | 1.5  | 1.6   | 1.4  | 1.1  | 0.9  | 0.8  | 0.6  | 0.6  | 0.6 |
| 200        | 0.9  | 1.0   | 1.0   | 1.0  | 1.1  | 1.2  | 1.3   | 1.2  | 0.9  | 0.8  | 0.7  | 0.6  | 0.5  | 0.5 |
| 225        | 0.8  | 0.8   | 0.8   | 0.9  | 0.9  | 1.0  | 1.0   | 1.0  | 0.8  | 0.7  | 0.6  | 0.5  | 0.5  | 0.5 |

Table A2.2 (continuation) Equivalent dose rate induced by low-energy neutrons from steel LAr Beam Pipe for T= 10y, t=100d

Addendum 3



Fig. A3.1 Sketch of the Pixel Detector with VI beam pipe section.

Table A3.1

| R/Z, cm | 0     | 50    | 100   | 150  | 200  | 250  | 300  | 325   | 335   | 345   | 365   | 380  | 400  | 425  | 450  |
|---------|-------|-------|-------|------|------|------|------|-------|-------|-------|-------|------|------|------|------|
| 0       |       |       |       |      |      |      |      |       |       |       | 67.50 | 7.94 | 3.22 | 1.74 | 1.15 |
| 10      |       |       |       |      |      |      |      |       |       | 42.02 | 18.75 | 6.98 | 3.13 | 1.73 | 1.15 |
| 23      | 35.51 | 24.38 | 14.67 | 6.66 | 5.54 | 5.55 | 8.25 | 18.46 | 29.70 | 20.86 | 8.58  | 5.13 | 2.83 | 1.65 | 1.12 |
| 30      | 25.72 | 17.59 | 10.33 | 5.23 | 4.19 | 4.17 | 6.30 | 11.85 | 17.99 | 14.78 | 6.76  | 4.39 | 2.62 | 1.59 | 1.10 |
| 40      | 17.88 | 12.51 | 7.92  | 4.34 | 3.37 | 3.32 | 4.82 | 7.35  | 9.69  | 8.67  | 5.01  | 3.55 | 2.32 | 1.49 | 1.06 |
| 50      | 13.23 | 9.53  | 6.48  | 3.79 | 2.90 | 2.83 | 3.82 | 4.99  | 5.28  | 5.10  | 3.80  | 2.91 | 2.06 | 1.39 | 1.01 |
| 75      | 7.27  | 5.63  | 4.36  | 2.90 | 2.25 | 2.10 | 2.39 | 2.56  | 2.55  | 2.48  | 2.16  | 1.88 | 1.51 | 1.15 | 0.89 |
| 100     | 4.59  | 3.78  | 3.16  | 2.32 | 1.84 | 1.67 | 1.68 | 1.67  | 1.66  | 1.61  | 1.47  | 1.33 | 1.15 | 0.94 | 0.77 |
| 125     | 3.17  | 2.75  | 2.40  | 1.88 | 1.54 | 1.37 | 1.30 | 1.25  | 1.22  | 1.18  | 1.10  | 1.03 | 0.92 | 0.79 | 0.67 |
| 150     | 2.33  | 2.09  | 1.88  | 1.55 | 1.30 | 1.14 | 1.05 | 1.00  | 0.97  | 0.95  | 0.88  | 0.83 | 0.76 | 0.66 | 0.59 |
| 200     | 1.42  | 1.33  | 1.25  | 1.09 | 0.95 | 0.84 | 0.75 | 0.71  | 0.69  | 0.67  | 0.64  | 0.60 | 0.56 | 0.51 | 0.47 |
| 250     | 0.97  | 0.92  | 0.89  | 0.81 | 0.72 | 0.65 | 0.59 | 0.55  | 0.52  | 0.51  | 0.49  | 0.47 | 0.44 | 0.41 | 0.38 |

Equivalent dose rate from Pixel + VI for T= 100d, t= 5d

Table A3.1 (continuation)

Equivalent dose rate from Pixel + VI for T= 100d, t= 7 d

|         |       |       |       | - 1- |      |      |      |       |       |       |       |      |      |      |      |
|---------|-------|-------|-------|------|------|------|------|-------|-------|-------|-------|------|------|------|------|
| R/Z, cm | 0     | 50    | 100   | 150  | 200  | 250  | 300  | 325   | 335   | 345   | 365   | 380  | 400  | 425  | 450  |
| 0       |       |       |       |      |      |      |      |       |       |       | 62.89 | 7.35 | 2.97 | 1.60 | 1.06 |
| 10      |       |       |       |      |      |      |      |       |       | 38.45 | 17.37 | 6.44 | 2.89 | 1.59 | 1.06 |
| 23      | 32.03 | 22.39 | 13.48 | 6.18 | 5.17 | 5.18 | 7.66 | 16.93 | 27.17 | 19.13 | 7.90  | 4.72 | 2.60 | 1.52 | 1.03 |
| 30      | 23.25 | 16.12 | 9.46  | 4.85 | 3.88 | 3.88 | 5.83 | 10.87 | 16.43 | 13.54 | 6.22  | 4.04 | 2.42 | 1.47 | 1.02 |
| 40      | 16.20 | 11.46 | 7.26  | 4.01 | 3.12 | 3.08 | 4.45 | 6.74  | 8.86  | 7.96  | 4.59  | 3.27 | 2.13 | 1.38 | 0.98 |
| 50      | 12.00 | 8.70  | 5.95  | 3.48 | 2.69 | 2.62 | 3.52 | 4.57  | 4.86  | 4.68  | 3.49  | 2.67 | 1.89 | 1.28 | 0.93 |
| 75      | 6.61  | 5.14  | 3.99  | 2.67 | 2.06 | 1.94 | 2.19 | 2.35  | 2.34  | 2.28  | 2.00  | 1.73 | 1.38 | 1.06 | 0.82 |
| 100     | 4.18  | 3.46  | 2.89  | 2.11 | 1.70 | 1.54 | 1.56 | 1.55  | 1.53  | 1.48  | 1.35  | 1.23 | 1.06 | 0.87 | 0.70 |
| 125     | 2.89  | 2.50  | 2.19  | 1.72 | 1.41 | 1.25 | 1.20 | 1.14  | 1.12  | 1.09  | 1.01  | 0.94 | 0.84 | 0.72 | 0.62 |
| 150     | 2.12  | 1.90  | 1.72  | 1.41 | 1.20 | 1.06 | 0.96 | 0.91  | 0.89  | 0.87  | 0.82  | 0.77 | 0.69 | 0.61 | 0.54 |
| 200     | 1.30  | 1.22  | 1.14  | 1.01 | 0.88 | 0.77 | 0.69 | 0.65  | 0.64  | 0.62  | 0.58  | 0.56 | 0.51 | 0.47 | 0.42 |
| 250     | 0.87  | 0.84  | 0.80  | 0.74 | 0.66 | 0.59 | 0.53 | 0.49  | 0.48  | 0.47  | 0.45  | 0.43 | 0.41 | 0.38 | 0.35 |

Table A3.1 (continuation)

| R/Z, cm | 0     | 50    | 100   | 150  | 200  | 250  | 300  | 325   | 335   | 345   | 365   | 380  | 400  | 425  | 450  |
|---------|-------|-------|-------|------|------|------|------|-------|-------|-------|-------|------|------|------|------|
| 0       |       |       |       |      |      |      |      |       |       |       | 56.77 | 6.33 | 2.50 | 1.34 | 0.88 |
| 10      |       |       |       |      |      |      |      |       |       | 31.23 | 15.18 | 5.52 | 2.43 | 1.34 | 0.88 |
| 23      | 24.95 | 18.37 | 10.98 | 5.34 | 4.54 | 4.57 | 6.56 | 13.99 | 22.21 | 15.69 | 6.64  | 3.99 | 2.18 | 1.27 | 0.86 |
| 30      | 18.20 | 13.11 | 7.71  | 4.13 | 3.37 | 3.37 | 4.94 | 8.98  | 13.38 | 11.12 | 5.21  | 3.40 | 2.02 | 1.23 | 0.83 |
| 40      | 12.75 | 9.27  | 5.91  | 3.36 | 2.67 | 2.64 | 3.74 | 5.59  | 7.26  | 6.55  | 3.82  | 2.73 | 1.79 | 1.16 | 0.80 |
| 50      | 9.50  | 7.02  | 4.84  | 2.90 | 2.28 | 2.23 | 2.96 | 3.80  | 4.02  | 3.88  | 2.90  | 2.22 | 1.58 | 1.07 | 0.77 |
| 75      | 5.26  | 4.14  | 3.24  | 2.19 | 1.73 | 1.63 | 1.84 | 1.96  | 1.96  | 1.90  | 1.65  | 1.43 | 1.15 | 0.88 | 0.68 |
| 100     | 3.34  | 2.79  | 2.35  | 1.74 | 1.40 | 1.28 | 1.30 | 1.28  | 1.26  | 1.23  | 1.13  | 1.03 | 0.88 | 0.72 | 0.59 |
| 125     | 2.32  | 2.02  | 1.77  | 1.41 | 1.17 | 1.04 | 0.99 | 0.95  | 0.93  | 0.91  | 0.85  | 0.78 | 0.69 | 0.60 | 0.51 |
| 150     | 1.72  | 1.54  | 1.40  | 1.17 | 0.98 | 0.87 | 0.80 | 0.77  | 0.74  | 0.72  | 0.68  | 0.63 | 0.57 | 0.50 | 0.45 |
| 200     | 1.05  | 0.97  | 0.92  | 0.81 | 0.72 | 0.64 | 0.58 | 0.54  | 0.52  | 0.50  | 0.48  | 0.46 | 0.43 | 0.39 | 0.35 |
| 250     | 0.71  | 0.68  | 0.66  | 0.60 | 0.54 | 0.49 | 0.43 | 0.41  | 0.40  | 0.39  | 0.37  | 0.36 | 0.33 | 0.31 | 0.29 |

Equivalent dose rate from Pixel + VI for T= 100d, t= 15d

Table A3.1 (continuation)

Equivalent dose rate from Pixel + VI for T= 100d, t= 30 d

|         |       |       |      |      |      | 000 140 |      |       |       | 000, 1 | <u> </u> |      |      |      |      |
|---------|-------|-------|------|------|------|---------|------|-------|-------|--------|----------|------|------|------|------|
| R/Z, cm | 0     | 50    | 100  | 150  | 200  | 250     | 300  | 325   | 335   | 345    | 365      | 380  | 400  | 425  | 450  |
| 0       |       |       |      |      |      |         |      |       |       |        | 52.04    | 5.47 | 2.11 | 1.12 | 0.73 |
| 10      |       |       |      |      |      |         |      |       |       | 24.91  | 13.35    | 4.73 | 2.05 | 1.11 | 0.72 |
| 23      | 19.25 | 14.91 | 8.79 | 4.56 | 3.96 | 3.98    | 5.59 | 11.47 | 18.01 | 12.69  | 5.57     | 3.36 | 1.82 | 1.05 | 0.70 |
| 30      | 14.10 | 10.53 | 6.19 | 3.46 | 2.90 | 2.90    | 4.15 | 7.35  | 10.78 | 9.00   | 4.32     | 2.84 | 1.69 | 1.01 | 0.69 |
| 40      | 9.93  | 7.40  | 4.76 | 2.79 | 2.26 | 2.25    | 3.13 | 4.59  | 5.89  | 5.33   | 3.17     | 2.27 | 1.48 | 0.95 | 0.67 |
| 50      | 7.41  | 5.60  | 3.89 | 2.40 | 1.92 | 1.88    | 2.46 | 3.13  | 3.31  | 3.19   | 2.40     | 1.84 | 1.31 | 0.88 | 0.64 |
| 75      | 4.15  | 3.29  | 2.60 | 1.79 | 1.44 | 1.36    | 1.52 | 1.62  | 1.60  | 1.55   | 1.37     | 1.19 | 0.96 | 0.72 | 0.56 |
| 100     | 2.64  | 2.22  | 1.88 | 1.41 | 1.15 | 1.06    | 1.06 | 1.06  | 1.04  | 1.01   | 0.93     | 0.84 | 0.72 | 0.59 | 0.49 |
| 125     | 1.84  | 1.61  | 1.43 | 1.14 | 0.95 | 0.86    | 0.82 | 0.79  | 0.77  | 0.75   | 0.70     | 0.64 | 0.57 | 0.49 | 0.42 |
| 150     | 1.36  | 1.23  | 1.12 | 0.93 | 0.80 | 0.71    | 0.65 | 0.63  | 0.62  | 0.59   | 0.55     | 0.52 | 0.47 | 0.42 | 0.37 |
| 200     | 0.85  | 0.79  | 0.75 | 0.66 | 0.58 | 0.52    | 0.47 | 0.44  | 0.43  | 0.42   | 0.40     | 0.37 | 0.35 | 0.32 | 0.29 |
| 250     | 0.57  | 0.55  | 0.53 | 0.48 | 0.45 | 0.41    | 0.35 | 0.33  | 0.32  | 0.32   | 0.30     | 0.29 | 0.28 | 0.26 | 0.24 |

Table A3.1 (continuation)

| R/Z, cm | 0     | 50   | 100  | 150  | 200  | 250  | 300  | 325  | 335   | 345   | 365   | 380  | 400  | 425  | 450  |
|---------|-------|------|------|------|------|------|------|------|-------|-------|-------|------|------|------|------|
| 0       |       |      |      |      |      |      |      |      |       |       | 45.49 | 4.17 | 1.48 | 0.76 | 0.49 |
| 10      |       |      |      |      |      |      |      |      |       | 15.20 | 10.65 | 3.52 | 1.43 | 0.76 | 0.49 |
| 23      | 11.07 | 9.29 | 5.24 | 3.20 | 2.88 | 2.92 | 3.96 | 7.65 | 11.65 | 8.02  | 3.92  | 2.38 | 1.27 | 0.72 | 0.48 |
| 30      | 8.14  | 6.43 | 3.73 | 2.34 | 2.03 | 2.07 | 2.85 | 4.83 | 6.81  | 5.69  | 2.96  | 1.97 | 1.16 | 0.68 | 0.46 |
| 40      | 5.76  | 4.48 | 2.89 | 1.83 | 1.55 | 1.56 | 2.12 | 3.02 | 3.77  | 3.42  | 2.13  | 1.55 | 1.01 | 0.64 | 0.45 |
| 50      | 4.32  | 3.38 | 2.37 | 1.54 | 1.29 | 1.29 | 1.66 | 2.06 | 2.18  | 2.10  | 1.60  | 1.25 | 0.88 | 0.60 | 0.43 |
| 75      | 2.44  | 1.99 | 1.58 | 1.14 | 0.94 | 0.91 | 1.01 | 1.07 | 1.06  | 1.04  | 0.91  | 0.79 | 0.63 | 0.48 | 0.38 |
| 100     | 1.58  | 1.34 | 1.15 | 0.88 | 0.74 | 0.69 | 0.71 | 0.70 | 0.70  | 0.67  | 0.61  | 0.55 | 0.48 | 0.39 | 0.32 |
| 125     | 1.11  | 0.97 | 0.87 | 0.71 | 0.61 | 0.56 | 0.54 | 0.51 | 0.50  | 0.48  | 0.45  | 0.42 | 0.37 | 0.33 | 0.28 |
| 150     | 0.81  | 0.74 | 0.69 | 0.59 | 0.51 | 0.46 | 0.43 | 0.40 | 0.39  | 0.38  | 0.36  | 0.34 | 0.31 | 0.27 | 0.24 |
| 200     | 0.51  | 0.47 | 0.46 | 0.41 | 0.37 | 0.34 | 0.30 | 0.28 | 0.27  | 0.27  | 0.25  | 0.24 | 0.23 | 0.21 | 0.19 |
| 250     | 0.35  | 0.34 | 0.33 | 0.30 | 0.28 | 0.25 | 0.22 | 0.21 | 0.21  | 0.20  | 0.19  | 0.19 | 0.18 | 0.17 | 0.16 |

Equivalent dose rate from Pixel + VI for T= 100d, t= 100 d

Table A3.2

| R/Z, cm | 0     | 50    | 100   | 150   | 200   | 250   | 300   | 325   | 335   | 345   | 365    | 380   | 400  | 425  | 450  |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|------|------|------|
| 0       |       |       |       |       |       |       |       |       |       |       | 235.32 | 21.40 | 7.55 | 3.86 | 2.48 |
| 10      |       |       |       |       |       |       |       |       |       |       | 54.75  | 18.05 | 7.29 | 3.82 | 2.47 |
| 23      | 53.97 | 44.32 | 25.35 | 15.80 | 14.36 | 14.63 | 19.99 | 39.23 | 59.71 | 40.48 | 19.95  | 12.14 | 6.43 | 3.62 | 2.40 |
| 30      | 39.47 | 30.69 | 17.97 | 11.45 | 10.11 | 10.30 | 14.42 | 24.68 | 34.68 | 28.62 | 15.06  | 10.01 | 5.89 | 3.47 | 2.35 |
| 40      | 27.84 | 21.38 | 13.90 | 8.96  | 7.68  | 7.80  | 10.68 | 15.32 | 19.09 | 17.19 | 10.80  | 7.85  | 5.13 | 3.25 | 2.26 |
| 50      | 20.87 | 16.13 | 11.39 | 7.55  | 6.36  | 6.40  | 8.34  | 10.46 | 10.97 | 10.58 | 8.10   | 6.30  | 4.46 | 2.99 | 2.14 |
| 75      | 11.76 | 9.51  | 7.63  | 5.51  | 4.62  | 4.50  | 5.09  | 5.38  | 5.36  | 5.20  | 4.58   | 3.98  | 3.21 | 2.42 | 1.86 |
| 100     | 7.58  | 6.44  | 5.53  | 4.30  | 3.65  | 3.45  | 3.53  | 3.50  | 3.44  | 3.35  | 3.06   | 2.79  | 2.41 | 1.96 | 1.60 |
| 125     | 5.31  | 4.71  | 4.21  | 3.46  | 2.98  | 2.76  | 2.66  | 2.57  | 2.51  | 2.45  | 2.26   | 2.11  | 1.90 | 1.62 | 1.37 |
| 150     | 3.96  | 3.61  | 3.33  | 2.84  | 2.49  | 2.28  | 2.11  | 2.02  | 1.98  | 1.92  | 1.80   | 1.70  | 1.54 | 1.36 | 1.19 |
| 200     | 2.48  | 2.34  | 2.22  | 2.00  | 1.80  | 1.63  | 1.47  | 1.41  | 1.37  | 1.34  | 1.25   | 1.20  | 1.12 | 1.03 | 0.92 |
| 250     | 1.71  | 1.65  | 1.59  | 1.47  | 1.35  | 1.23  | 1.13  | 1.06  | 1.04  | 1.01  | 0.96   | 0.92  | 0.88 | 0.81 | 0.75 |

Equivalent dose rate from Pixel + VI for T= 10 y, t= 5d

## Table A3.2 (continuation)

| Equivalent dose rate from Pixel + VI for T= | 10 v | t= 7 d |
|---------------------------------------------|------|--------|

|         |       |       |       |       |       |       |       |       |       | ·• ), • |        |       |      |      |      |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|--------|-------|------|------|------|
| R/Z, cm | 0     | 50    | 100   | 150   | 200   | 250   | 300   | 325   | 335   | 345     | 365    | 380   | 400  | 425  | 450  |
| 0       |       |       |       |       |       |       |       |       |       |         | 229.39 | 20.72 | 7.29 | 3.71 | 2.38 |
| 10      |       |       |       |       |       |       |       |       |       | 73.82   | 53.16  | 17.47 | 7.04 | 3.66 | 2.36 |
| 23      | 50.42 | 42.28 | 24.11 | 15.32 | 13.97 | 14.23 | 19.35 | 37.64 | 57.09 | 38.68   | 19.23  | 11.70 | 6.20 | 3.48 | 2.30 |
| 30      | 36.96 | 29.17 | 17.10 | 11.05 | 9.81  | 10.00 | 13.91 | 23.66 | 33.07 | 27.35   | 14.47  | 9.63  | 5.66 | 3.34 | 2.25 |
| 40      | 26.12 | 20.29 | 13.23 | 8.62  | 7.42  | 7.54  | 10.30 | 14.69 | 18.23 | 16.44   | 10.37  | 7.55  | 4.94 | 3.12 | 2.16 |
| 50      | 19.61 | 15.28 | 10.83 | 7.23  | 6.14  | 6.19  | 8.03  | 10.03 | 10.53 | 10.14   | 7.78   | 6.06  | 4.29 | 2.88 | 2.06 |
| 75      | 11.10 | 9.01  | 7.26  | 5.27  | 4.44  | 4.33  | 4.88  | 5.17  | 5.14  | 5.00    | 4.40   | 3.82  | 3.07 | 2.32 | 1.78 |
| 100     | 7.15  | 6.11  | 5.26  | 4.10  | 3.49  | 3.31  | 3.38  | 3.36  | 3.31  | 3.21    | 2.94   | 2.67  | 2.31 | 1.88 | 1.53 |
| 125     | 5.04  | 4.46  | 4.01  | 3.30  | 2.86  | 2.64  | 2.55  | 2.47  | 2.42  | 2.35    | 2.18   | 2.03  | 1.82 | 1.55 | 1.32 |
| 150     | 3.75  | 3.43  | 3.15  | 2.70  | 2.37  | 2.17  | 2.03  | 1.94  | 1.89  | 1.84    | 1.73   | 1.63  | 1.48 | 1.31 | 1.15 |
| 200     | 2.35  | 2.23  | 2.11  | 1.91  | 1.71  | 1.56  | 1.42  | 1.34  | 1.31  | 1.27    | 1.20   | 1.15  | 1.08 | 0.98 | 0.88 |
| 250     | 1.62  | 1.57  | 1.52  | 1.40  | 1.29  | 1.17  | 1.06  | 1.01  | 0.98  | 0.96    | 0.92   | 0.89  | 0.83 | 0.77 | 0.72 |

Table A3.2 (continuation)

| Equivalent dose rate from $Pixei + vi \text{ for } i = 10$ | U V. t= 150 | 1 |
|------------------------------------------------------------|-------------|---|
|------------------------------------------------------------|-------------|---|

|         |       |       |       |       |       |       |       |       |       | · • <b>J</b> , • |        |       |      |      |      |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------------------|--------|-------|------|------|------|
| R/Z, cm | 0     | 50    | 100   | 150   | 200   | 250   | 300   | 325   | 335   | 345              | 365    | 380   | 400  | 425  | 450  |
| 0       |       |       |       |       |       |       |       |       |       |                  | 225.46 | 19.79 | 6.83 | 3.45 | 2.19 |
| 10      |       |       |       |       |       |       |       |       |       | 66.45            | 51.30  | 16.61 | 6.58 | 3.41 | 2.19 |
| 23      | 43.06 | 38.04 | 21.50 | 14.39 | 13.28 | 13.56 | 18.19 | 34.55 | 51.92 | 35.12            | 18.00  | 10.98 | 5.77 | 3.24 | 2.13 |
| 30      | 31.69 | 26.00 | 15.25 | 10.26 | 9.24  | 9.45  | 12.97 | 21.68 | 29.88 | 24.84            | 13.45  | 9.00  | 5.27 | 3.10 | 2.08 |
| 40      | 22.53 | 17.98 | 11.80 | 7.93  | 6.93  | 7.08  | 9.55  | 13.49 | 16.57 | 15.00            | 9.60   | 7.01  | 4.58 | 2.89 | 1.99 |
| 50      | 16.99 | 13.52 | 9.67  | 6.62  | 5.71  | 5.77  | 7.44  | 9.22  | 9.67  | 9.30             | 7.18   | 5.61  | 3.97 | 2.67 | 1.90 |
| 75      | 9.68  | 7.97  | 6.46  | 4.77  | 4.08  | 4.01  | 4.51  | 4.76  | 4.73  | 4.60             | 4.05   | 3.53  | 2.83 | 2.13 | 1.65 |
| 100     | 6.29  | 5.40  | 4.68  | 3.70  | 3.19  | 3.05  | 3.11  | 3.09  | 3.04  | 2.96             | 2.70   | 2.46  | 2.13 | 1.73 | 1.41 |
| 125     | 4.44  | 3.96  | 3.57  | 2.97  | 2.59  | 2.42  | 2.33  | 2.26  | 2.22  | 2.15             | 2.00   | 1.87  | 1.66 | 1.42 | 1.21 |
| 150     | 3.32  | 3.04  | 2.81  | 2.44  | 2.15  | 1.98  | 1.86  | 1.77  | 1.72  | 1.69             | 1.58   | 1.49  | 1.35 | 1.20 | 1.05 |
| 200     | 2.09  | 1.97  | 1.89  | 1.71  | 1.54  | 1.41  | 1.28  | 1.23  | 1.19  | 1.16             | 1.10   | 1.05  | 0.99 | 0.89 | 0.81 |
| 250     | 1.44  | 1.40  | 1.35  | 1.27  | 1.16  | 1.07  | 0.96  | 0.92  | 0.90  | 0.88             | 0.84   | 0.80  | 0.76 | 0.70 | 0.66 |

Table A3.2 (continuation)

Equivalent dose rate from Pixel + VI for T= 10 y, t= 30 d

|         |       |       |       |       |       | 1000 140 |       |       |       | 10 J, t | 00 0   |       |      |      |      |
|---------|-------|-------|-------|-------|-------|----------|-------|-------|-------|---------|--------|-------|------|------|------|
| R/Z, cm | 0     | 50    | 100   | 150   | 200   | 250      | 300   | 325   | 335   | 345     | 365    | 380   | 400  | 425  | 450  |
| 0       |       |       |       |       |       |          |       |       |       |         | 217.27 | 18.68 | 6.34 | 3.19 | 2.02 |
| 10      |       |       |       |       |       |          |       |       |       | 59.43   | 48.80  | 15.61 | 6.12 | 3.14 | 2.01 |
| 23      | 36.87 | 34.17 | 19.07 | 13.48 | 12.56 | 12.85    | 17.03 | 31.70 | 47.18 | 31.75   | 16.72  | 10.21 | 5.36 | 2.98 | 1.96 |
| 30      | 27.24 | 23.15 | 13.56 | 9.51  | 8.66  | 8.89     | 12.06 | 19.83 | 26.98 | 22.46   | 12.41  | 8.34  | 4.88 | 2.86 | 1.91 |
| 40      | 19.45 | 15.92 | 10.52 | 7.28  | 6.46  | 6.61     | 8.83  | 12.34 | 15.03 | 13.62   | 8.83   | 6.47  | 4.22 | 2.66 | 1.83 |
| 50      | 14.72 | 11.96 | 8.61  | 6.04  | 5.27  | 5.37     | 6.85  | 8.45  | 8.84  | 8.51    | 6.59   | 5.16  | 3.66 | 2.45 | 1.75 |
| 75      | 8.46  | 7.04  | 5.76  | 4.32  | 3.74  | 3.70     | 4.15  | 4.36  | 4.35  | 4.22    | 3.72   | 3.23  | 2.60 | 1.96 | 1.51 |
| 100     | 5.51  | 4.78  | 4.17  | 3.33  | 2.91  | 2.78     | 2.86  | 2.84  | 2.79  | 2.71    | 2.48   | 2.26  | 1.94 | 1.58 | 1.29 |
| 125     | 3.91  | 3.50  | 3.17  | 2.67  | 2.35  | 2.21     | 2.14  | 2.07  | 2.02  | 1.96    | 1.83   | 1.70  | 1.52 | 1.30 | 1.10 |
| 150     | 2.93  | 2.70  | 2.50  | 2.19  | 1.95  | 1.80     | 1.70  | 1.62  | 1.58  | 1.54    | 1.43   | 1.36  | 1.24 | 1.10 | 0.95 |
| 200     | 1.85  | 1.76  | 1.68  | 1.53  | 1.39  | 1.28     | 1.18  | 1.11  | 1.08  | 1.06    | 1.00   | 0.96  | 0.90 | 0.81 | 0.73 |
| 250     | 1.29  | 1.25  | 1.21  | 1.13  | 1.04  | 0.96     | 0.87  | 0.84  | 0.82  | 0.79    | 0.76   | 0.72  | 0.69 | 0.64 | 0.59 |

## Table A3.2 (continuation)

|         |       |       |       |       |       |       |       |       |       | <b>,</b> |        |       |      |      |      |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|----------|--------|-------|------|------|------|
| R/Z, cm | 0     | 50    | 100   | 150   | 200   | 250   | 300   | 325   | 335   | 345      | 365    | 380   | 400  | 425  | 450  |
| 0       |       |       |       |       |       |       |       |       |       |          | 204.07 | 16.73 | 5.48 | 2.70 | 1.70 |
| 10      |       |       |       |       |       |       |       |       |       | 47.16    | 44.41  | 13.85 | 5.27 | 2.66 | 1.70 |
| 23      | 26.87 | 26.99 | 14.65 | 11.54 | 10.96 | 11.26 | 14.69 | 26.52 | 38.81 | 25.71    | 14.41  | 8.84  | 4.59 | 2.52 | 1.64 |
| 30      | 19.94 | 17.97 | 10.48 | 7.97  | 7.46  | 7.68  | 10.26 | 16.48 | 21.85 | 18.19    | 10.56  | 7.14  | 4.16 | 2.41 | 1.61 |
| 40      | 14.35 | 12.25 | 8.17  | 6.00  | 5.47  | 5.65  | 7.45  | 10.25 | 12.26 | 11.12    | 7.43   | 5.49  | 3.58 | 2.24 | 1.53 |
| 50      | 10.93 | 9.17  | 6.69  | 4.93  | 4.44  | 4.55  | 5.76  | 7.03  | 7.34  | 7.06     | 5.52   | 4.35  | 3.09 | 2.06 | 1.45 |
| 75      | 6.36  | 5.39  | 4.48  | 3.48  | 3.08  | 3.09  | 3.47  | 3.64  | 3.61  | 3.51     | 3.10   | 2.70  | 2.18 | 1.64 | 1.25 |
| 100     | 4.19  | 3.68  | 3.25  | 2.67  | 2.37  | 2.30  | 2.37  | 2.35  | 2.31  | 2.25     | 2.07   | 1.87  | 1.62 | 1.32 | 1.06 |
| 125     | 2.99  | 2.71  | 2.48  | 2.12  | 1.91  | 1.81  | 1.76  | 1.71  | 1.68  | 1.64     | 1.52   | 1.41  | 1.27 | 1.07 | 0.91 |
| 150     | 2.26  | 2.09  | 1.96  | 1.73  | 1.57  | 1.47  | 1.39  | 1.34  | 1.30  | 1.26     | 1.19   | 1.12  | 1.02 | 0.90 | 0.79 |
| 200     | 1.43  | 1.38  | 1.32  | 1.21  | 1.12  | 1.03  | 0.95  | 0.91  | 0.89  | 0.87     | 0.82   | 0.78  | 0.73 | 0.67 | 0.61 |
| 250     | 1.00  | 0.99  | 0.95  | 0.90  | 0.84  | 0.77  | 0.71  | 0.67  | 0.66  | 0.64     | 0.62   | 0.59  | 0.57 | 0.52 | 0.49 |

Equivalent dose rate from Pixel + VI for T= 10 y, t= 100 d

Addendum 4



Fig. A4.1. To calculations of dose rate from LAr End Cap.

Table A4.1

|          |       |      |      | Equiva | alent dos | se rate n | om lai | EC calor | imeterio | SI I = I0 | υ a, ι= 5 | a     |       |       |       |       |
|----------|-------|------|------|--------|-----------|-----------|--------|----------|----------|-----------|-----------|-------|-------|-------|-------|-------|
|          |       | 340  | 340- | 350-   | 365-      | 380-      | 405-   | 430-     | 480-     | 530-      | 580-      | 605-  | 630-  | 645-  | 660-  | 670   |
| R/Z,     |       |      | 350  | 365    | 380       | 405       | 430    | 480      | 530      | 580       | 605       | 630   | 645   | 660   | 670   |       |
| cm       | dR\dZ | 0    | 10   | 15     | 15        | 25        | 25     | 50       | 50       | 50        | 25        | 25    | 15    | 15    | 10    | 0     |
| 0- 5     | 5     | 15.5 | 15.6 | 16.6   | 17.9      | 19.4      | 21.8   | 26.5     | 36.3     | 54.1      | 83.1      | 119.1 | 155.4 | 208.9 | 283.1 | 317.5 |
| 5- 10    | 5     | 14.6 | 14.7 | 15.5   | 16.7      | 18.2      | 20.6   | 25       | 34.4     | 51.5      | 78        | 109   | 143.1 | 181.9 | 232.8 | 253.6 |
| 10- 20   | 10    | 13.8 | 14.2 | 15     | 16        | 17.6      | 19.8   | 24.2     | 33.4     | 50.5      | 73.9      | 97.8  | 128.2 | 161.1 | 198   | 210.7 |
| 20- 30   | 10    | 13.1 | 13.4 | 14.2   | 15.1      | 16.5      | 18.6   | 22.8     | 31.4     | 47.6      | 67.2      | 88.5  | 113.2 | 137.3 | 163.6 | 173.2 |
| 30- 45   | 15    | 11.9 | 12.1 | 12.8   | 13.5      | 14.8      | 16.6   | 20.1     | 27.9     | 41.1      | 56.9      | 75.1  | 94.7  | 115.8 | 138.6 | 145.5 |
| 45- 60   | 15    | 10.5 | 10.7 | 11.2   | 12        | 13        | 14.6   | 17.9     | 24.7     | 35.8      | 50.5      | 64.2  | 79.2  | 93.4  | 109.1 | 113.1 |
| 60- 75   | 15    | 9.6  | 9.7  | 10.1   | 10.7      | 11.6      | 13.2   | 16.4     | 22.6     | 32.3      | 43.2      | 54.1  | 63.4  | 71.3  | 78.5  | 79.5  |
| 75- 95   | 20    | 8.5  | 8.6  | 9      | 9.5       | 10.4      | 12     | 15.1     | 20.2     | 27.6      | 36.7      | 42.2  | 46.9  | 49.9  | 50.7  | 49.9  |
| 95- 115  | 20    | 7.5  | 7.7  | 8.1    | 8.7       | 9.8       | 11.3   | 13.6     | 17.2     | 23.9      | 27.9      | 31.3  | 31.8  | 32.3  | 30.9  | 29.8  |
| 115- 125 | 10    | 7.1  | 7.3  | 7.8    | 8.4       | 9.4       | 10.5   | 12.3     | 15.7     | 20.6      | 22.7      | 24.8  | 23.3  | 23.6  | 21.5  | 20.3  |
| 125- 150 | 25    | 6.9  | 7    | 7.5    | 8         | 8.8       | 9.6    | 10.9     | 14.2     | 16.5      | 18.6      | 17.9  | 16.8  | 16.5  | 14.5  | 13.7  |
| 150- 175 | 25    | 6.6  | 6.7  | 7      | 7.3       | 7.8       | 8.3    | 9.6      | 11.4     | 12.3      | 12.8      | 11.3  | 10.5  | 10.1  | 8.3   | 8     |
| 175-200  | 25    | 6.1  | 6.2  | 6.3    | 6.5       | 6.8       | 7.1    | 7.9      | 9        | 9.2       | 8.6       | 6.9   | 6.5   | 5.9   | 4.5   | 4.1   |
| 200-225  | 25    | 5.5  | 5.5  | 5.5    | 5.5       | 5.4       | 5.7    | 6.8      | 7.1      | 6.7       | 5.7       | 4.2   | 4.2   | 3.1   | 2     | 1.8   |

Equivalent dose rate from LAr EC calorimeter for T= 100 d, t= 5 d

Table A4.1 (continuation)

|          |       | 340 | 340- | 350- | 365- | 380- | 405- | 430- | 480- | 530- | 580- | 605- | 630- | 645- | 660- | 670  |
|----------|-------|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| R/Z,     |       |     | 350  | 365  | 380  | 405  | 430  | 480  | 530  | 580  | 605  | 630  | 645  | 660  | 670  |      |
| cm       | dR\dZ | 0   | 10   | 15   | 15   | 25   | 25   | 50   | 50   | 50   | 25   | 25   | 15   | 15   | 10   | 0    |
| 0- 5     | 5     | 3.1 | 3.3  | 3.5  | 3.7  | 4    | 4.7  | 5.9  | 8.4  | 13.3 | 20.7 | 30.5 | 43.8 | 61.1 | 85   | 94.6 |
| 5- 10    | 5     | 2.9 | 2.9  | 3.2  | 3.4  | 3.7  | 4.3  | 5.4  | 7.7  | 12.2 | 18.9 | 27.6 | 38.9 | 52.6 | 69.2 | 74.5 |
| 10- 20   | 10    | 2.8 | 2.8  | 3    | 3.3  | 3.6  | 4.2  | 5.2  | 7.4  | 11.4 | 17.3 | 24.1 | 33.1 | 44.8 | 59.4 | 64.5 |
| 20- 30   | 10    | 2.7 | 2.8  | 2.9  | 3.1  | 3.5  | 3.9  | 4.9  | 6.9  | 10.4 | 15   | 20.6 | 27.7 | 35.7 | 47.2 | 52.2 |
| 30- 45   | 15    | 2.5 | 2.5  | 2.7  | 2.9  | 3.1  | 3.6  | 4.4  | 5.9  | 8.7  | 12.3 | 16.5 | 21.4 | 27   | 33.7 | 35.9 |
| 45- 60   | 15    | 2.3 | 2.3  | 2.4  | 2.5  | 2.8  | 3.1  | 3.7  | 4.9  | 7.1  | 10.2 | 13.5 | 16.6 | 19.8 | 23.1 | 23.7 |
| 60- 75   | 15    | 2   | 2    | 2.1  | 2.2  | 2.4  | 2.6  | 3.1  | 4.2  | 6.3  | 8.8  | 10.8 | 12.8 | 14.5 | 15.8 | 15.8 |
| 75-95    | 20    | 1.7 | 1.7  | 1.7  | 1.8  | 2    | 2.1  | 2.6  | 3.8  | 5.5  | 7.1  | 8.4  | 9.2  | 10   | 10.2 | 9.9  |
| 95- 115  | 20    | 1.3 | 1.3  | 1.4  | 1.4  | 1.7  | 1.9  | 2.6  | 3.4  | 4.5  | 5.5  | 6.2  | 6.2  | 6.7  | 6.4  | 5.9  |
| 115- 125 | 10    | 1.2 | 1.2  | 1.3  | 1.4  | 1.7  | 2    | 2.5  | 3    | 3.9  | 4.6  | 4.9  | 4.7  | 5    | 4.4  | 4.2  |
| 125- 150 | 25    | 1.2 | 1.2  | 1.3  | 1.5  | 1.7  | 1.9  | 2.2  | 2.5  | 3.2  | 3.6  | 3.6  | 3.4  | 3.7  | 3.1  | 2.9  |
| 150- 175 | 25    | 1.3 | 1.3  | 1.4  | 1.5  | 1.6  | 1.6  | 1.7  | 2.1  | 2.4  | 2.6  | 2.3  | 2.3  | 2.4  | 1.8  | 1.7  |
| 175-200  | 25    | 1.3 | 1.3  | 1.3  | 1.2  | 1.2  | 1.2  | 1.4  | 1.8  | 1.8  | 1.8  | 1.4  | 1.6  | 1.5  | 1.1  | 0.9  |
| 200-225  | 25    | 1   | 0.9  | 0.9  | 0.9  | 0.9  | 1    | 1.4  | 1.4  | 1.4  | 1.2  | 0.9  | 1.2  | 0.9  | 0.5  | 0.4  |

Equivalent dose rate from LAr EC calorimeter for T= 100 d, t= 100 d

Table A4.1 (continuation)

|          |       |      |      |      |      |      | -    |      |      |      | <b>,</b> , | -     |       |       |       |       |
|----------|-------|------|------|------|------|------|------|------|------|------|------------|-------|-------|-------|-------|-------|
|          |       | 340  | 340- | 350- | 365- | 380- | 405- | 430- | 480- | 530- | 580-       | 605-  | 630-  | 645-  | 660-  | 670   |
| R/Z,     |       |      | 350  | 365  | 380  | 405  | 430  | 480  | 530  | 580  | 605        | 630   | 645   | 660   | 670   |       |
| cm       | dR\dZ | 0    | 10   | 15   | 15   | 25   | 25   | 50   | 50   | 50   | 25         | 25    | 15    | 15    | 10    | 0     |
| 0- 5     | 5     | 22.9 | 23.6 | 24.9 | 26.6 | 29.2 | 32.8 | 40   | 55.8 | 84.5 | 128.5      | 186.4 | 251.1 | 339.4 | 458.4 | 506.6 |
| 5- 10    | 5     | 21.7 | 22.1 | 23.3 | 24.9 | 27.4 | 30.8 | 37.8 | 52.9 | 80.3 | 121.7      | 173.4 | 234.4 | 305.8 | 391.1 | 418.7 |
| 10- 20   | 10    | 20.7 | 21.1 | 22.4 | 23.9 | 26.3 | 29.6 | 36.3 | 50.8 | 77.6 | 115.3      | 158   | 212.8 | 275.5 | 351.4 | 375.8 |
| 20- 30   | 10    | 19.5 | 19.9 | 21.1 | 22.6 | 24.7 | 27.9 | 34.1 | 47.6 | 73   | 105.5      | 143   | 188.4 | 238.4 | 303.9 | 329.8 |
| 30- 45   | 15    | 17.8 | 18.1 | 19.1 | 20.4 | 22.3 | 25   | 30.6 | 42.8 | 64.3 | 91.4       | 122.4 | 158.6 | 198.7 | 245.3 | 257.8 |
| 45- 60   | 15    | 16.1 | 16.3 | 17.1 | 18.1 | 19.8 | 22.3 | 27.4 | 38.3 | 56.5 | 80.5       | 104.6 | 130.1 | 156.2 | 183.4 | 192.3 |
| 60- 75   | 15    | 14.4 | 14.8 | 15.5 | 16.4 | 17.8 | 20.1 | 25.1 | 35   | 51   | 69.9       | 87.6  | 103.5 | 117.3 | 129.7 | 129.7 |
| 75- 95   | 20    | 12.9 | 13.1 | 13.7 | 14.5 | 15.9 | 18.2 | 23.2 | 31.5 | 44.3 | 58.5       | 68.7  | 76.3  | 82.4  | 84.6  | 82.8  |
| 95- 115  | 20    | 11.3 | 11.4 | 12.2 | 13.1 | 14.8 | 17.2 | 21.1 | 27.4 | 37.8 | 45.6       | 51    | 52.4  | 54.6  | 52.2  | 50    |
| 115- 125 | 10    | 10.6 | 10.8 | 11.7 | 12.8 | 14.4 | 16.4 | 19.5 | 24.9 | 32.7 | 37.3       | 40.4  | 39    | 40.5  | 36.7  | 34.7  |
| 125- 150 | 25    | 10.4 | 10.6 | 11.5 | 12.5 | 13.7 | 15.3 | 17.5 | 22.1 | 26.7 | 30.3       | 29.7  | 28.4  | 29    | 25.3  | 23.8  |
| 150- 175 | 25    | 10.4 | 10.6 | 11.1 | 11.7 | 12.4 | 13.2 | 14.7 | 18.2 | 20.1 | 21.3       | 18.9  | 18.3  | 18.2  | 14.8  | 13.9  |
| 175- 200 | 25    | 9.8  | 9.8  | 10.1 | 10.3 | 10.5 | 10.8 | 12.4 | 14.7 | 15.1 | 14.9       | 11.7  | 12.1  | 11    | 8     | 7.4   |
| 200-225  | 25    | 8.4  | 8.4  | 8.4  | 8.2  | 8.3  | 8.9  | 11   | 11.4 | 11.4 | 9.8        | 7.3   | 8.1   | 6.1   | 3.7   | 3.3   |

Equivalent dose rate from LAr EC calorimeter for T= 10 y, t= 5 d

Table A4.1 (continuation)

|          |       |      |      | Equina |      |      |      |      |      |      | <u>, , , , , , , , , , , , , , , , , , , </u> |      |       |       |       |       |
|----------|-------|------|------|--------|------|------|------|------|------|------|-----------------------------------------------|------|-------|-------|-------|-------|
|          |       | 340  | 340- | 350-   | 365- | 380- | 405- | 430- | 480- | 530- | 580-                                          | 605- | 630-  | 645-  | 660-  | 670   |
| R/Z,     |       |      | 350  | 365    | 380  | 405  | 430  | 480  | 530  | 580  | 605                                           | 630  | 645   | 660   | 670   |       |
| cm       | dR\dZ | 0    | 10   | 15     | 15   | 25   | 25   | 50   | 50   | 50   | 25                                            | 25   | 15    | 15    | 10    | 0     |
| 0-5      | 5     | 10.1 | 10.3 | 10.9   | 11.8 | 12.8 | 14.6 | 18.1 | 26   | 40.7 | 62                                            | 90.9 | 130.9 | 179.8 | 239.5 | 261.4 |
| 5- 10    | 5     | 9.4  | 9.5  | 10.1   | 10.9 | 12   | 13.5 | 17   | 24.4 | 38.2 | 58.6                                          | 85.4 | 121.1 | 165.1 | 211.1 | 222.4 |
| 10- 20   | 10    | 9    | 9.1  | 9.6    | 10.4 | 11.5 | 12.9 | 16.2 | 23.1 | 36   | 55                                            | 78.5 | 109.7 | 149   | 198.3 | 213.1 |
| 20- 30   | 10    | 8.5  | 8.7  | 9.2    | 9.8  | 10.8 | 12.3 | 15.1 | 21.4 | 33.3 | 50.1                                          | 70.5 | 96.5  | 128.4 | 178.1 | 201.7 |
| 30- 45   | 15    | 7.9  | 8    | 8.5    | 9    | 9.9  | 11.2 | 13.8 | 19.4 | 29.9 | 43.9                                          | 60.1 | 80.1  | 103.2 | 132.6 | 142.4 |
| 45- 60   | 15    | 7.2  | 7.3  | 7.7    | 8.2  | 9    | 10.1 | 12.4 | 17.3 | 26.2 | 38.1                                          | 50.8 | 64.2  | 77.7  | 91.6  | 94.2  |
| 60- 75   | 15    | 6.6  | 6.7  | 7      | 7.4  | 8    | 9    | 11.1 | 15.6 | 23.5 | 33.4                                          | 41.7 | 50.1  | 57.4  | 63.5  | 63.5  |
| 75-95    | 20    | 5.7  | 5.8  | 6.1    | 6.4  | 6.9  | 7.9  | 10.1 | 14.3 | 20.8 | 27.2                                          | 33   | 36.4  | 40.2  | 41.7  | 40.6  |
| 95- 115  | 20    | 4.8  | 4.9  | 5.2    | 5.5  | 6.3  | 7.4  | 9.6  | 12.7 | 17.3 | 21.8                                          | 24.4 | 25.3  | 27.3  | 26.3  | 24.8  |
| 115- 125 | 10    | 4.5  | 4.6  | 4.9    | 5.4  | 6.3  | 7.4  | 9.1  | 11.4 | 15.1 | 18                                            | 19.4 | 19.2  | 20.7  | 18.8  | 17.4  |
| 125- 150 | 25    | 4.5  | 4.6  | 5.1    | 5.5  | 6.3  | 7.1  | 8.1  | 9.9  | 12.8 | 14.3                                          | 14.6 | 14.1  | 15.3  | 13    | 12.2  |
| 150- 175 | 25    | 4.8  | 4.9  | 5.2    | 5.5  | 5.8  | 6    | 6.4  | 8.4  | 9.7  | 10.6                                          | 9.4  | 9.6   | 9.9   | 7.7   | 7.3   |
| 175-200  | 25    | 4.7  | 4.7  | 4.7    | 4.6  | 4.6  | 4.6  | 5.6  | 7.2  | 7.3  | 7.6                                           | 6    | 6.8   | 6.2   | 4.3   | 4     |
| 200-225  | 25    | 3.7  | 3.6  | 3.6    | 3.5  | 3.5  | 4    | 5.3  | 5.4  | 5.8  | 5                                             | 3.8  | 4.8   | 3.6   | 2.1   | 1.9   |

Equivalent dose rate from LAr EC calorimeter for T= 10 y, t= 100 d



Fig. A4.2. To calculations of dose rate from LAr Barrel.

Table A4.2

|          |       | 340 | 340- | 350- | 365- | 380- | 405- | 430- | 480- | 530- | 580- | 605- | 630- | 645- | 660- | 670 |
|----------|-------|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|-----|
| R/Z,     |       |     | 350  | 365  | 380  | 405  | 430  | 480  | 530  | 580  | 605  | 630  | 645  | 660  | 670  |     |
| cm       | dR\dZ | 0   | 10   | 15   | 15   | 25   | 25   | 50   | 50   | 50   | 25   | 25   | 15   | 15   | 10   | 0   |
| 0-5      | 5     | 8.1 | 7.1  | 5.8  | 6.1  | 6.3  | 4.1  | 4.4  | 3    | 1.7  | 1.7  |      |      |      |      |     |
| 5- 10    | 5     | 8.1 | 7.1  | 5.9  | 6.2  | 6.3  | 4.1  | 4.4  | 3    | 1.7  | 1.7  |      |      |      |      |     |
| 10- 20   | 10    | 8.1 | 7.2  | 5.9  | 6.1  | 6.2  | 4.2  | 4.4  | 3    | 2    | 1.7  |      |      |      |      |     |
| 20- 30   | 10    | 8.1 | 7.3  | 6    | 6.2  | 6    | 4.6  | 4.1  | 3    | 2.2  | 1.7  |      |      |      |      |     |
| 30- 45   | 15    | 8   | 7.3  | 6.4  | 6.2  | 5.6  | 5.1  | 3.9  | 3.1  | 2.4  | 1.6  |      |      |      |      |     |
| 45- 60   | 15    | 7.8 | 7.4  | 6.6  | 5.9  | 5.5  | 5.4  | 3.7  | 3.3  | 2.4  | 1.5  |      |      |      |      |     |
| 60- 75   | 15    | 7.8 | 7.6  | 6.7  | 5.8  | 5.7  | 5    | 3.9  | 3.2  | 2.4  | 1.5  |      |      |      |      |     |
| 75-95    | 20    | 7.9 | 7.7  | 6.8  | 6.1  | 5.3  | 4.9  | 4    | 3    | 2.5  | 1.5  |      |      |      |      |     |
| 95- 115  | 20    | 8   | 7.9  | 7    | 5.9  | 5.2  | 4.8  | 3.8  | 2.8  | 2.3  | 1.5  |      |      |      |      |     |
| 115- 125 | 10    | 8.5 | 7.9  | 7.1  | 6    | 5.1  | 4.4  | 3.8  | 2.8  | 2.3  | 1.6  |      |      |      |      |     |
| 125- 150 | 25    | 9   | 7.8  | 7.1  | 6    | 5    | 4.4  | 3.7  | 2.7  | 2.1  | 1.6  |      |      |      |      |     |
| 150- 175 | 25    | 8.5 | 7.4  | 6.7  | 5.7  | 4.8  | 3.9  | 3.4  | 2.6  | 2    | 1.4  |      |      |      |      |     |
| 175-200  | 25    | 7.2 | 6.2  | 5.9  | 5.3  | 4.4  | 3.8  | 3.3  | 2.5  | 1.9  | 1.3  |      |      |      |      |     |
| 200-225  | 25    | 6   | 5.1  | 4.8  | 4.5  | 3.7  | 3.2  | 2.7  | 2.2  | 1.7  | 1.2  |      |      |      |      |     |

Equivalent dose rate from LAr Barrel calorimeter for T= 100 d, t= 5d

|          |       | 340 | 340- | 350- | 365- | 380- | 405- | 430- | 480- | 530- | 580- | 605- | 630- | 645- | 660- | 670 |
|----------|-------|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|-----|
| R/Z,     |       |     | 350  | 365  | 380  | 405  | 430  | 480  | 530  | 580  | 605  | 630  | 645  | 660  | 670  |     |
| cm       | dR\dZ | 0   | 10   | 15   | 15   | 25   | 25   | 50   | 50   | 50   | 25   | 25   | 15   | 15   | 10   | 0   |
| 0-5      | 5     | 2.2 | 2    | 1.8  | 1.9  | 1.6  | 1.3  | 1.2  | 0.9  | 0.5  | 0.4  |      |      |      |      |     |
| 5- 10    | 5     | 2.2 | 2    | 1.8  | 1.9  | 1.6  | 1.3  | 1.2  | 0.9  | 0.5  | 0.4  |      |      |      |      |     |
| 10- 20   | 10    | 2.2 | 2    | 1.9  | 1.8  | 1.6  | 1.3  | 1.2  | 0.9  | 0.5  | 0.4  |      |      |      |      |     |
| 20- 30   | 10    | 2.2 | 2    | 2    | 1.8  | 1.6  | 1.4  | 1.2  | 0.9  | 0.7  | 0.4  |      |      |      |      |     |
| 30- 45   | 15    | 2.3 | 2.1  | 1.9  | 1.8  | 1.6  | 1.5  | 1.1  | 0.9  | 0.7  | 0.4  |      |      |      |      |     |
| 45- 60   | 15    | 2.3 | 2.2  | 2    | 1.8  | 1.6  | 1.5  | 1.1  | 0.9  | 0.7  | 0.4  |      |      |      |      |     |
| 60- 75   | 15    | 2.3 | 2.2  | 2    | 1.8  | 1.6  | 1.4  | 1.2  | 0.8  | 0.7  | 0.4  |      |      |      |      |     |
| 75-95    | 20    | 2.3 | 2.3  | 2.1  | 1.7  | 1.5  | 1.4  | 1.2  | 0.8  | 0.7  | 0.4  |      |      |      |      |     |
| 95- 115  | 20    | 2.3 | 2.2  | 2    | 1.7  | 1.5  | 1.3  | 1.1  | 0.8  | 0.7  | 0.4  |      |      |      |      |     |
| 115- 125 | 10    | 2.5 | 2.3  | 2    | 1.7  | 1.4  | 1.2  | 1.1  | 0.8  | 0.6  | 0.4  |      |      |      |      |     |
| 125- 150 | 25    | 2.7 | 2.2  | 2    | 1.7  | 1.4  | 1.2  | 1    | 0.7  | 0.6  | 0.4  |      |      |      |      |     |
| 150- 175 | 25    | 2.3 | 2    | 1.8  | 1.6  | 1.3  | 1.1  | 1    | 0.7  | 0.6  | 0.4  |      |      |      |      |     |
| 175-200  | 25    | 2   | 1.8  | 1.6  | 1.5  | 1.2  | 1.1  | 0.9  | 0.7  | 0.6  | 0.4  |      |      |      |      |     |
| 200-225  | 25    | 1.9 | 1.5  | 1.4  | 1.3  | 1.1  | 0.9  | 0.8  | 0.6  | 0.5  | 0.3  |      |      |      |      |     |

Table A4.2 (continuation) Equivalent dose rate induced by high-energy hadrons from calorimeter for T= 100 d, t= 100 d

Table A4.2 (continuation)

|          |       | 340  | 340- | 350- | 365- | 380- | 405- | 430- | 480- | 530- | 580- | 605- | 630- | 645- | 660- | 670 |
|----------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|-----|
| R/Z,     |       |      | 350  | 365  | 380  | 405  | 430  | 480  | 530  | 580  | 605  | 630  | 645  | 660  | 670  |     |
| cm       | dR\dZ | 0    | 10   | 15   | 15   | 25   | 25   | 50   | 50   | 50   | 25   | 25   | 15   | 15   | 10   | 0   |
| 0-5      | 5     | 14.2 | 12.4 | 10.8 | 11.1 | 10.6 | 7.8  | 7.5  | 5.5  | 3.4  | 2.8  |      |      |      |      |     |
| 5- 10    | 5     | 14.1 | 12.5 | 10.8 | 11   | 10.6 | 7.8  | 7.5  | 5.5  | 3.4  | 2.8  |      |      |      |      |     |
| 10- 20   | 10    | 14.1 | 12.7 | 11   | 11   | 10.4 | 7.9  | 7.5  | 5.5  | 3.6  | 2.8  |      |      |      |      |     |
| 20- 30   | 10    | 14.1 | 12.6 | 11.2 | 10.9 | 10.3 | 8.3  | 7.3  | 5.5  | 3.9  | 2.8  |      |      |      |      |     |
| 30- 45   | 15    | 14   | 12.8 | 11.5 | 10.9 | 9.9  | 8.9  | 7.1  | 5.5  | 4.2  | 2.7  |      |      |      |      |     |
| 45- 60   | 15    | 13.9 | 13   | 11.9 | 10.8 | 9.8  | 9.2  | 6.9  | 5.7  | 4.3  | 2.8  |      |      |      |      |     |
| 60- 75   | 15    | 14   | 13.4 | 12.4 | 10.6 | 10   | 9    | 7    | 5.5  | 4.4  | 2.9  |      |      |      |      |     |
| 75-95    | 20    | 14.3 | 13.9 | 12.4 | 10.9 | 9.6  | 8.7  | 7.1  | 5.2  | 4.3  | 2.8  |      |      |      |      |     |
| 95- 115  | 20    | 14.4 | 14.3 | 12.7 | 10.8 | 9.3  | 8.5  | 6.6  | 5.1  | 4.1  | 2.8  |      |      |      |      |     |
| 115- 125 | 10    | 15.8 | 14.5 | 12.7 | 10.7 | 9.2  | 7.8  | 6.6  | 4.9  | 3.9  | 2.7  |      |      |      |      |     |
| 125- 150 | 25    | 16.8 | 14.3 | 12.7 | 10.8 | 9    | 7.7  | 6.5  | 4.6  | 3.7  | 2.8  |      |      |      |      |     |
| 150- 175 | 25    | 15.3 | 13   | 12   | 10.2 | 8.4  | 7.1  | 5.9  | 4.7  | 3.7  | 2.7  |      |      |      |      |     |
| 175-200  | 25    | 13   | 11.2 | 10.7 | 9.6  | 8.1  | 6.9  | 5.8  | 4.4  | 3.3  | 2.4  |      |      |      |      |     |
| 200-225  | 25    | 11.4 | 9.7  | 9.1  | 8.3  | 7    | 5.8  | 4.9  | 3.9  | 3.1  | 2.1  |      |      |      |      |     |

Equivalent dose rate induced by high-energy hadrons from calorimeter for T= 10 y, t= 5 d

|          |       |     | antaiont | 4000 14 |      |      |      | ) naarer |      |      |      | 10 J, t |      |      |      |     |
|----------|-------|-----|----------|---------|------|------|------|----------|------|------|------|---------|------|------|------|-----|
|          |       | 340 | 340-     | 350-    | 365- | 380- | 405- | 430-     | 480- | 530- | 580- | 605-    | 630- | 645- | 660- | 670 |
| R/Z,     |       |     | 350      | 365     | 380  | 405  | 430  | 480      | 530  | 580  | 605  | 630     | 645  | 660  | 670  |     |
| cm       | dR\dZ | 0   | 10       | 15      | 15   | 25   | 25   | 50       | 50   | 50   | 25   | 25      | 15   | 15   | 10   | 0   |
| 0-5      | 5     | 7.4 | 7.3      | 6.9     | 6.4  | 6.2  | 5.6  | 4.7      | 4.1  | 3.1  | 2    | 1.4     |      |      |      |     |
| 5- 10    | 5     | 7.4 | 7.3      | 6.9     | 6.4  | 6.3  | 5.6  | 4.7      | 4.1  | 3.1  | 2.1  | 1.4     |      |      |      |     |
| 10- 20   | 10    | 7.4 | 7.4      | 7       | 6.5  | 6.2  | 5.5  | 4.7      | 4.1  | 3.1  | 2.1  | 1.4     |      |      |      |     |
| 20- 30   | 10    | 7.4 | 7.4      | 7.1     | 6.6  | 6.1  | 5.5  | 4.8      | 4    | 3.1  | 2.2  | 1.4     |      |      |      |     |
| 30- 45   | 15    | 7.3 | 7.5      | 7.2     | 6.7  | 6    | 5.5  | 5        | 3.9  | 3.1  | 2.3  | 1.5     |      |      |      |     |
| 45- 60   | 15    | 7.1 | 7.6      | 7.3     | 6.8  | 6.1  | 5.5  | 5        | 3.9  | 3    | 2.3  | 1.6     |      |      |      |     |
| 60- 75   | 15    | 7.1 | 7.7      | 7.6     | 7    | 6.1  | 5.5  | 5        | 4    | 3    | 2.4  | 1.6     |      |      |      |     |
| 75-95    | 20    | 7.2 | 8.1      | 7.9     | 7.1  | 6.3  | 5.4  | 4.9      | 3.9  | 2.9  | 2.4  | 1.6     |      |      |      |     |
| 95- 115  | 20    | 7.2 | 8.2      | 8.1     | 7.4  | 6.2  | 5.3  | 4.7      | 3.7  | 2.9  | 2.3  | 1.5     |      |      |      |     |
| 115- 125 | 10    | 7.6 | 9.3      | 8.3     | 7.2  | 6.1  | 5.2  | 4.3      | 3.7  | 2.7  | 2.1  | 1.5     |      |      |      |     |
| 125- 150 | 25    | 8   | 9.8      | 8.3     | 7.2  | 6.1  | 4.9  | 4.2      | 3.6  | 2.5  | 2.1  | 1.5     |      |      |      |     |
| 150- 175 | 25    | 7.4 | 8.4      | 7.2     | 6.6  | 5.7  | 4.7  | 3.9      | 3.3  | 2.6  | 2.2  | 1.5     |      |      |      |     |
| 175-200  | 25    | 5.9 | 7.3      | 6.3     | 6    | 5.4  | 4.5  | 3.8      | 3.2  | 2.5  | 1.9  | 1.3     |      |      |      |     |
| 200-225  | 25    | 4.5 | 6.8      | 5.8     | 5.3  | 4.8  | 4    | 3.3      | 2.7  | 2.2  | 1.7  | 1.2     |      |      |      |     |

Table A4.2 (continuation) Equivalent dose rate induced by high-energy hadrons from calorimeter for T= 10 y, t= 100 d

## Addendum 5



Fig. A5.1 General detector opening layout to calculations of access dose rate.

Table A5.1

Equivalent dose rate in the general access scenario for T= 2 y, t= 5 d

| R/Z,     |       | 280 | 280-<br>290 | 290-<br>315 | 315-<br>340 | 340   | 340-<br>350 | 350-<br>365 | 365-<br>380 | 380-<br>405 | 405-<br>430 | 430-<br>480 | 480-<br>530 | 530-<br>580 | 580-<br>630 | 630-<br>660 | 660-<br>670 | 670    |
|----------|-------|-----|-------------|-------------|-------------|-------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------|
| cm       | dR∖dZ | 0   | 10          | 25          | 25          | 0     | 10          | 15          | 15          | 25          | 25          | 50          | 50          | 50          | 50          | 30          | 10          | 0      |
| 0-5      | 5     |     |             |             |             |       |             |             |             |             |             |             |             |             |             |             |             |        |
| 5- 10    | 5     |     |             |             |             | 411.0 | 460.9       | 1062.5      | 4048.1      | 2349.5      | 1587.2      | 2110.3      | 3358.6      | 3036.7      | 2604.9      | 2468.4      | 2454.4      | 1401.2 |
| 10-20    | 10    |     |             |             |             | 358.8 | 394.3       | 651.9       | 1246.5      | 1083.6      | 839.8       | 1042.0      | 1516.7      | 1435.7      | 1274.1      | 1241.3      | 1264.8      | 786.9  |
| 20- 30   | 10    |     |             |             |             | 292.5 | 315.3       | 424.1       | 584.8       | 594.2       | 536.1       | 634.7       | 849.9       | 838.5       | 773.6       | 771.0       | 796.1       | 542.9  |
| 30- 45   | 15    |     |             |             |             | 243.6 | 255.4       | 291.4       | 345.5       | 369.5       | 369.5       | 425.4       | 532.8       | 541.6       | 517.6       | 527.3       | 551.8       | 388.7  |
| 45- 60   | 15    |     |             |             |             | 205.1 | 211.3       | 213.4       | 233.9       | 252.1       | 266.1       | 301.5       | 359.3       | 372.9       | 368.8       | 378.5       | 394.7       | 282.3  |
| 60- 75   | 15    |     |             |             |             | 164.9 | 168.4       | 169.1       | 179.0       | 192.1       | 205.9       | 231.0       | 266.9       | 280.8       | 282.0       | 286.6       | 291.9       | 202.5  |
| 75-95    | 20    |     |             |             |             | 135.4 | 136.7       | 136.4       | 141.7       | 150.4       | 161.7       | 179.9       | 202.3       | 213.8       | 215.9       | 214.8       | 211.9       | 140.1  |
| 95- 115  | 20    |     |             |             |             | 119.6 | 118.0       | 114.0       | 115.3       | 120.9       | 129.3       | 141.3       | 155.7       | 165.2       | 164.6       | 159.3       | 154.1       | 96.6   |
| 115- 125 | 10    |     |             |             |             | 109.0 | 107.4       | 101.4       | 101.5       | 105.6       | 111.7       | 121.0       | 131.8       | 138.9       | 137.0       | 130.4       | 124.7       | 75.4   |
| 125- 150 | 25    |     |             |             |             | 91.7  | 90.1        | 88.3        | 88.8        | 91.4        | 95.8        | 102.6       | 110.9       | 114.5       | 112.3       | 105.6       | 100.4       | 59.2   |
| 150- 175 | 25    |     |             |             |             | 75.7  | 74.5        | 73.7        | 74.1        | 75.8        | 78.1        | 82.9        | 88.4        | 90.0        | 86.2        | 80.5        | 76.3        | 43.0   |
| 175-200  | 25    |     |             |             |             | 63.0  | 62.1        | 62.4        | 63.1        | 63.9        | 65.6        | 68.8        | 71.8        | 72.2        | 68.0        | 63.5        | 59.6        | 32.1   |
| 200-225  | 25    |     |             |             |             | 53.8  | 52.8        | 52.7        | 53.2        | 53.5        | 55.0        | 57.8        | 59.4        | 59.1        | 54.7        | 51.0        | 47.6        | 24.5   |

Table A5.1 (continuation)

|          |       |     |             | _ quit      |             | 000 1010 |             | gonore      |             | 000011      |             | · – – ),    |             |             |             |             |             |       |
|----------|-------|-----|-------------|-------------|-------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------|
| R/Z,     |       | 280 | 280-<br>290 | 290-<br>315 | 315-<br>340 | 340      | 340-<br>350 | 350-<br>365 | 365-<br>380 | 380-<br>405 | 405-<br>430 | 430-<br>480 | 480-<br>530 | 530-<br>580 | 580-<br>630 | 630-<br>660 | 660-<br>670 | 670   |
| cm       | dR∖dZ | 0   | 10          | 25          | 25          | 0        | 10          | 15          | 15          | 25          | 25          | 50          | 50          | 50          | 50          | 30          | 10          | 0     |
| 0-5      | 5     |     |             |             |             |          |             |             |             |             |             |             |             |             |             |             |             |       |
| 5- 10    | 5     |     |             |             |             | 274.5    | 304.4       | 681.0       | 2572.3      | 1485.6      | 1004.1      | 1343.4      | 2161.9      | 1953.9      | 1669.9      | 1583.7      | 1585.1      | 924.6 |
| 10-20    | 10    |     |             |             |             | 240.1    | 260.1       | 419.9       | 794.3       | 688.0       | 533.6       | 665.8       | 976.4       | 923.5       | 818.5       | 802.3       | 827.7       | 533.4 |
| 20- 30   | 10    |     |             |             |             | 195.1    | 208.7       | 275.2       | 374.7       | 379.3       | 342.5       | 406.7       | 547.7       | 539.8       | 497.3       | 499.4       | 524.0       | 371.3 |
| 30- 45   | 15    |     |             |             |             | 164.6    | 171.7       | 190.8       | 223.4       | 237.6       | 237.1       | 273.4       | 343.4       | 348.6       | 332.5       | 339.9       | 357.9       | 258.2 |
| 45- 60   | 15    |     |             |             |             | 140.8    | 144.4       | 141.2       | 152.2       | 163.7       | 171.6       | 194.0       | 231.2       | 239.8       | 236.7       | 243.1       | 253.6       | 182.2 |
| 60- 75   | 15    |     |             |             |             | 112.7    | 114.4       | 112.1       | 117.5       | 125.2       | 133.1       | 148.8       | 171.4       | 180.5       | 180.8       | 183.5       | 186.9       | 129.7 |
| 75-95    | 20    |     |             |             |             | 92.1     | 93.3        | 91.0        | 93.7        | 98.3        | 104.6       | 115.9       | 130.3       | 137.4       | 138.5       | 137.4       | 135.5       | 89.7  |
| 95- 115  | 20    |     |             |             |             | 81.8     | 80.5        | 76.2        | 76.4        | 79.2        | 84.1        | 91.7        | 100.5       | 106.2       | 105.6       | 102.0       | 98.7        | 62.0  |
| 115- 125 | 10    |     |             |             |             | 74.9     | 73.4        | 68.0        | 67.1        | 69.2        | 72.8        | 78.6        | 85.0        | 89.3        | 88.0        | 83.6        | 79.9        | 48.5  |
| 125- 150 | 25    |     |             |             |             | 62.3     | 61.3        | 59.0        | 59.0        | 60.1        | 62.8        | 66.6        | 71.6        | 74.0        | 72.1        | 67.7        | 64.4        | 38.1  |
| 150- 175 | 25    |     |             |             |             | 50.9     | 49.9        | 49.2        | 49.3        | 49.9        | 51.5        | 53.9        | 57.2        | 58.1        | 55.6        | 51.8        | 48.9        | 27.9  |
| 175-200  | 25    |     |             |             |             | 42.7     | 41.6        | 41.6        | 41.8        | 42.1        | 42.8        | 44.8        | 46.9        | 46.8        | 43.7        | 40.9        | 38.3        | 20.7  |
| 200-225  | 25    |     |             |             |             | 36.0     | 35.2        | 35.2        | 35.2        | 35.2        | 36.1        | 37.9        | 38.4        | 38.6        | 35.3        | 32.9        | 30.6        | 15.9  |

Equivalent dose rate in the general access scenario for T= 2 y, t= 15 d

Table A5.1 (continuation)

|          |       |     |      |      |      |       |       | Ŭ     |        |        |       | <b>,</b> |        |        |        |        |        |       |
|----------|-------|-----|------|------|------|-------|-------|-------|--------|--------|-------|----------|--------|--------|--------|--------|--------|-------|
| ר/ ס     |       | 280 | 280- | 290- | 315- | 340   | 340-  | 350-  | 365-   | 380-   | 405-  | 430-     | 480-   | 530-   | 580-   | 630-   | 660-   | 670   |
| R/Z,     |       |     | 290  | 315  | 340  |       | 350   | 365   | 380    | 405    | 430   | 480      | 530    | 580    | 630    | 660    | 670    |       |
| cm       | dR∖dZ | 0   | 10   | 25   | 25   | 0     | 10    | 15    | 15     | 25     | 25    | 50       | 50     | 50     | 50     | 30     | 10     | 0     |
| 0- 5     | 5     |     |      |      |      |       |       |       |        |        |       |          |        |        |        |        |        |       |
| 5- 10    | 5     |     |      |      |      | 202.3 | 222.1 | 481.9 | 1796.2 | 1028.4 | 694.2 | 939.2    | 1529.8 | 1377.5 | 1166.5 | 1110.7 | 1120.9 | 666.3 |
| 10-20    | 10    |     |      |      |      | 176.8 | 189.0 | 297.3 | 555.3  | 478.7  | 371.3 | 466.8    | 691.0  | 651.8  | 574.7  | 567.0  | 593.7  | 393.9 |
| 20- 30   | 10    |     |      |      |      | 143.1 | 151.4 | 196.3 | 263.6  | 266.1  | 239.8 | 286.1    | 387.3  | 381.2  | 349.9  | 354.3  | 377.7  | 278.4 |
| 30- 45   | 15    |     |      |      |      | 122.0 | 126.5 | 137.3 | 158.8  | 167.9  | 167.2 | 192.9    | 243.0  | 246.2  | 234.1  | 241.0  | 256.9  | 188.8 |
| 45- 60   | 15    |     |      |      |      | 106.2 | 108.5 | 102.5 | 109.4  | 116.5  | 121.7 | 137.4    | 163.5  | 169.2  | 166.7  | 171.8  | 179.3  | 129.9 |
| 60- 75   | 15    |     |      |      |      | 84.6  | 86.0  | 82.0  | 84.8   | 89.4   | 94.8  | 105.5    | 121.1  | 127.3  | 127.3  | 129.4  | 131.4  | 91.8  |
| 75- 95   | 20    |     |      |      |      | 69.0  | 69.4  | 67.0  | 67.7   | 70.6   | 74.7  | 81.9     | 92.2   | 97.2   | 97.3   | 96.8   | 95.5   | 63.7  |
| 95- 115  | 20    |     |      |      |      | 61.4  | 60.2  | 56.1  | 55.4   | 57.0   | 60.2  | 65.1     | 71.4   | 74.9   | 74.2   | 72.1   | 69.4   | 44.1  |
| 115- 125 | 10    |     |      |      |      | 56.6  | 55.0  | 50.1  | 49.1   | 50.0   | 52.2  | 56.1     | 60.2   | 63.1   | 61.8   | 59.1   | 56.2   | 34.4  |
| 125- 150 | 25    |     |      |      |      | 46.7  | 45.4  | 43.4  | 43.2   | 43.5   | 45.1  | 47.5     | 50.7   | 52.4   | 50.9   | 48.1   | 45.4   | 27.1  |
| 150- 175 | 25    |     |      |      |      | 37.9  | 37.1  | 36.3  | 36.2   | 36.6   | 36.8  | 38.4     | 40.9   | 41.3   | 39.4   | 36.8   | 34.4   | 19.8  |
| 175-200  | 25    |     |      |      |      | 31.6  | 30.9  | 30.7  | 30.5   | 30.4   | 30.8  | 32.1     | 33.4   | 33.1   | 31.1   | 29.0   | 27.0   | 14.8  |
| 200-225  | 25    |     |      |      |      | 26.8  | 25.9  | 25.4  | 25.6   | 25.6   | 26.0  | 27.2     | 27.6   | 27.4   | 25.2   | 23.3   | 21.5   | 11.4  |

Equivalent dose rate in the general access scenario for T= 2 y, t= 30 d

Table A5.1 (continuation)

|          |       |     |             | Lyuiva      |             |       |             | jenerai     | 000000      | 5 300110    |             | I - Z y,    | 1- 100      | u           |             |             |             |       |
|----------|-------|-----|-------------|-------------|-------------|-------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------|
| R/Z,     |       | 280 | 280-<br>290 | 290-<br>315 | 315-<br>340 | 340   | 340-<br>350 | 350-<br>365 | 365-<br>380 | 380-<br>405 | 405-<br>430 | 430-<br>480 | 480-<br>530 | 530-<br>580 | 580-<br>630 | 630-<br>660 | 660-<br>670 | 670   |
| cm       | dR∖dZ | 0   | 10          | 25          | 25          | 0     | 10          | 15          | 15          | 25          | 25          | 50          | 50          | 50          | 50          | 30          | 10          | 0     |
| 0-5      | 5     |     |             |             |             |       |             |             |             |             |             |             |             |             |             |             |             |       |
| 5- 10    | 5     |     |             |             |             | 114.5 | 125.0       | 261.1       | 940.3       | 529.1       | 354.5       | 487.0       | 805.6       | 720.3       | 608.1       | 585.5       | 596.0       | 366.2 |
| 10- 20   | 10    |     |             |             |             | 101.6 | 106.1       | 160.8       | 292.5       | 249.0       | 192.2       | 243.7       | 364.6       | 342.8       | 303.2       | 306.2       | 328.2       | 229.2 |
| 20- 30   | 10    |     |             |             |             | 81.9  | 84.7        | 106.8       | 140.6       | 139.9       | 125.5       | 150.6       | 205.0       | 201.5       | 186.8       | 195.5       | 218.3       | 178.8 |
| 30- 45   | 15    |     |             |             |             | 70.2  | 72.2        | 75.5        | 85.9        | 89.5        | 88.6        | 102.6       | 128.9       | 131.3       | 126.5       | 134.7       | 148.8       | 119.0 |
| 45- 60   | 15    |     |             |             |             | 61.7  | 63.1        | 57.6        | 60.3        | 62.9        | 65.1        | 73.7        | 87.2        | 90.8        | 90.7        | 96.1        | 102.6       | 78.9  |
| 60- 75   | 15    |     |             |             |             | 49.4  | 50.0        | 46.5        | 47.2        | 48.9        | 51.4        | 56.8        | 65.1        | 68.8        | 69.7        | 72.3        | 74.5        | 54.9  |
| 75-95    | 20    |     |             |             |             | 40.8  | 40.7        | 38.3        | 38.4        | 38.9        | 40.9        | 44.5        | 49.9        | 52.9        | 53.5        | 53.7        | 53.8        | 37.7  |
| 95- 115  | 20    |     |             |             |             | 36.4  | 35.3        | 32.4        | 31.6        | 31.9        | 32.9        | 35.8        | 39.0        | 40.9        | 40.9        | 40.0        | 38.8        | 25.4  |
| 115- 125 | 10    |     |             |             |             | 33.3  | 32.3        | 28.7        | 27.9        | 28.1        | 29.0        | 31.1        | 33.0        | 34.6        | 34.1        | 32.5        | 31.2        | 19.7  |
| 125- 150 | 25    |     |             |             |             | 27.7  | 26.6        | 25.4        | 24.6        | 24.6        | 25.4        | 26.5        | 27.9        | 29.0        | 28.0        | 26.4        | 25.0        | 15.4  |
| 150- 175 | 25    |     |             |             |             | 22.5  | 22.1        | 21.3        | 20.7        | 20.6        | 20.8        | 21.4        | 22.5        | 22.8        | 21.6        | 20.1        | 18.8        | 11.1  |
| 175-200  | 25    |     |             |             |             | 18.6  | 18.1        | 17.7        | 17.8        | 17.4        | 17.5        | 18.1        | 18.6        | 18.3        | 17.0        | 16.0        | 14.4        | 7.9   |
| 200-225  | 25    |     |             |             |             | 15.7  | 15.3        | 14.7        | 14.6        | 14.8        | 14.7        | 15.3        | 15.4        | 15.1        | 13.5        | 12.8        | 11.4        | 5.9   |

Equivalent dose rate in the general access scenario for T=2 y, t= 100 d



Fig. A5.2. Detector opening layout to calculations of access dose rate – TRT C removed.

Table A5.2

| Equivalent dose rate in the ID access scenario for T | Γ= 2 v | ∵t= 5 | 5 d — | -TRT C | removed |
|------------------------------------------------------|--------|-------|-------|--------|---------|
|------------------------------------------------------|--------|-------|-------|--------|---------|

| R/Z,     |       | 280 | 280-<br>290 | 290-<br>315 | 315-<br>340 | 340   | 340-<br>350 | 350-<br>365 | 365-<br>380 | 380-<br>405 | 405-<br>430 | 430-<br>480 | 480-<br>530 | 530-<br>580 | 580-<br>630 | 630-<br>660 | 660-<br>670 | 670    |
|----------|-------|-----|-------------|-------------|-------------|-------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------|
| cm       | dR∖dZ | 0   | 10          | 25          | 25          | 0     | 10          | 15          | 15          | 25          | 25          | 50          | 50          | 50          | 50          | 30          | 10          | 0      |
| 0- 5     | 5     |     |             |             |             |       |             |             |             |             |             |             |             |             |             |             |             |        |
| 5- 10    | 5     |     |             |             |             | 410.6 | 460.5       | 1062.3      | 4047.9      | 2349.4      | 1587.1      | 2110.2      | 3358.6      | 3036.7      | 2604.9      | 2468.4      | 2454.4      | 1401.2 |
| 10- 20   | 10    |     |             |             |             | 358.4 | 393.9       | 651.7       | 1246.3      | 1083.5      | 839.7       | 1041.9      | 1516.7      | 1435.7      | 1274.1      | 1241.3      | 1264.8      | 786.9  |
| 20- 30   | 10    |     |             |             |             | 292.1 | 314.9       | 423.9       | 584.6       | 594.1       | 536.0       | 634.6       | 849.9       | 838.5       | 773.6       | 771.0       | 796.1       | 542.9  |
| 30- 45   | 15    |     |             |             |             | 243.1 | 255.0       | 291.2       | 345.3       | 369.4       | 369.4       | 425.3       | 532.8       | 541.6       | 517.6       | 527.3       | 551.8       | 388.7  |
| 45- 60   | 15    |     |             |             |             | 204.5 | 210.8       | 213.1       | 233.6       | 252.0       | 266.0       | 301.4       | 359.2       | 372.9       | 368.8       | 378.5       | 394.7       | 282.3  |
| 60- 75   | 15    |     |             |             |             | 164.2 | 167.9       | 168.8       | 178.7       | 192.0       | 205.8       | 230.9       | 266.8       | 280.8       | 282.0       | 286.6       | 291.9       | 202.5  |
| 75-95    | 20    |     |             |             |             | 134.9 | 136.3       | 136.2       | 141.4       | 150.3       | 161.6       | 179.9       | 202.2       | 213.8       | 215.9       | 214.8       | 211.9       | 140.1  |
| 95- 115  | 20    |     |             |             |             | 119.2 | 117.8       | 113.8       | 115.2       | 120.8       | 129.2       | 141.3       | 155.6       | 165.2       | 164.6       | 159.3       | 154.1       | 96.6   |
| 115- 125 | 10    |     |             |             |             | 108.7 | 107.2       | 101.2       | 101.4       | 105.6       | 111.6       | 121.0       | 131.7       | 138.9       | 137.0       | 130.4       | 124.7       | 75.3   |
| 125- 150 | 25    |     |             |             |             | 91.4  | 90.0        | 88.2        | 88.7        | 91.3        | 95.6        | 102.6       | 110.8       | 114.5       | 112.3       | 105.6       | 100.4       | 59.1   |
| 150- 175 | 25    |     |             |             |             | 75.5  | 74.4        | 73.7        | 74.0        | 75.7        | 78.1        | 82.8        | 88.3        | 89.9        | 86.2        | 80.5        | 76.3        | 43.0   |
| 175-200  | 25    |     |             |             |             | 63.0  | 62.1        | 62.3        | 63.0        | 63.8        | 65.6        | 68.8        | 71.7        | 72.2        | 68.0        | 63.5        | 59.6        | 32.1   |
| 200-225  | 25    |     |             |             |             | 53.7  | 52.6        | 52.6        | 53.2        | 53.5        | 54.9        | 57.7        | 59.4        | 59.1        | 54.7        | 51.0        | 47.6        | 24.5   |

|          |       |     | Equiv.      | olont d     | oo rote     | in the   |             |             | norio f     | or T_ 0     | v +_ 10     | T h         |             | T           | able A      | 5.2 (cor    | ntinuatio   | on)   |
|----------|-------|-----|-------------|-------------|-------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------|
|          |       | -   | Equiva      | alent de    | use rate    | e in the | ID acc      |             | enano io    | J = Z       | y, t= 13    | 5 u — I     | RICI        | emovec      |             | -           |             | -     |
| R/Z,     |       | 280 | 280-<br>290 | 290-<br>315 | 315-<br>340 | 340      | 340-<br>350 | 350-<br>365 | 365-<br>380 | 380-<br>405 | 405-<br>430 | 430-<br>480 | 480-<br>530 | 530-<br>580 | 580-<br>630 | 630-<br>660 | 660-<br>670 | 670   |
| cm       | dR\dZ | 0   | 10          | 25          | 25          | 0        | 10          | 15          | 15          | 25          | 25          | 50          | 50          | 50          | 50          | 30          | 10          | 0     |
| 0- 5     | 5     |     |             |             |             |          |             |             |             |             |             |             |             |             |             |             |             |       |
| 5- 10    | 5     |     |             |             |             | 274.5    | 304.4       | 680.9       | 2572.2      | 1485.6      | 1004.0      | 1343.4      | 2161.9      | 1953.9      | 1669.9      | 1583.7      | 1585.1      | 924.6 |
| 10- 20   | 10    |     |             |             |             | 240.1    | 260.1       | 419.8       | 794.2       | 688.0       | 533.5       | 665.8       | 976.4       | 923.5       | 818.5       | 802.3       | 827.7       | 533.4 |
| 20- 30   | 10    |     |             |             |             | 195.1    | 208.7       | 275.1       | 374.6       | 379.3       | 342.4       | 406.7       | 547.7       | 539.8       | 497.3       | 499.4       | 524.0       | 371.3 |
| 30- 45   | 15    |     |             |             |             | 164.5    | 171.7       | 190.7       | 223.3       | 237.6       | 237.1       | 273.4       | 343.4       | 348.6       | 332.5       | 339.9       | 357.9       | 258.2 |
| 45- 60   | 15    |     |             |             |             | 140.7    | 144.3       | 141.2       | 152.1       | 163.7       | 171.6       | 194.0       | 231.2       | 239.8       | 236.7       | 243.1       | 253.6       | 182.2 |
| 60- 75   | 15    |     |             |             |             | 112.6    | 114.4       | 112.1       | 117.4       | 125.2       | 133.1       | 148.7       | 171.4       | 180.5       | 180.8       | 183.5       | 186.9       | 129.7 |
| 75- 95   | 20    |     |             |             |             | 92.1     | 93.2        | 91.0        | 93.7        | 98.3        | 104.6       | 115.9       | 130.3       | 137.4       | 138.5       | 137.4       | 135.5       | 89.7  |
| 95- 115  | 20    |     |             |             |             | 81.8     | 80.5        | 76.0        | 76.4        | 79.2        | 84.1        | 91.7        | 100.5       | 106.2       | 105.6       | 102.0       | 98.7        | 62.0  |
| 115- 125 | 10    |     |             |             |             | 74.8     | 73.4        | 67.9        | 67.1        | 69.2        | 72.8        | 78.6        | 85.0        | 89.3        | 88.0        | 83.6        | 79.9        | 48.5  |
| 125- 150 | 25    |     |             |             |             | 62.2     | 61.2        | 59.0        | 59.0        | 60.0        | 62.8        | 66.6        | 71.6        | 74.0        | 72.1        | 67.7        | 64.4        | 38.1  |
| 150- 175 | 25    |     |             |             |             | 50.8     | 49.9        | 49.2        | 49.2        | 49.9        | 51.5        | 53.9        | 57.2        | 58.1        | 55.6        | 51.8        | 48.9        | 27.9  |
| 175-200  | 25    |     |             |             |             | 42.6     | 41.6        | 41.6        | 41.8        | 42.1        | 42.8        | 44.8        | 46.9        | 46.8        | 43.7        | 40.9        | 38.3        | 20.7  |
| 200-225  | 25    |     |             |             |             | 36.0     | 35.2        | 35.2        | 35.1        | 35.2        | 36.1        | 37.9        | 38.4        | 38.5        | 35.3        | 32.9        | 30.6        | 15.9  |

|          |       |     | Eauiv       | alent de    | ose rate    | e in the | ID acc      | ess sce     | enario fo   | or T= 2     | v. t= 30    | ) d —T      | RT C re     | T<br>emovec | able A      | 5.2 (coi    | ntinuatio   | on)   |
|----------|-------|-----|-------------|-------------|-------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------|
| R/Z,     |       | 280 | 280-<br>290 | 290-<br>315 | 315-<br>340 | 340      | 340-<br>350 | 350-<br>365 | 365-<br>380 | 380-<br>405 | 405-<br>430 | 430-<br>480 | 480-<br>530 | 530-<br>580 | 580-<br>630 | 630-<br>660 | 660-<br>670 | 670   |
| cm       | dR∖dZ | 0   | 10          | 25          | 25          | 0        | 10          | 15          | 15          | 25          | 25          | 50          | 50          | 50          | 50          | 30          | 10          | 0     |
| 0-5      | 5     |     |             |             |             |          |             |             |             |             |             |             |             |             |             |             |             |       |
| 5- 10    | 5     |     |             |             |             | 202.3    | 222.1       | 481.9       | 1796.2      | 1028.4      | 694.2       | 939.2       | 1529.8      | 1377.5      | 1166.5      | 1110.7      | 1120.9      | 666.3 |
| 10-20    | 10    |     |             |             |             | 176.8    | 189.0       | 297.3       | 555.3       | 478.7       | 371.3       | 466.8       | 691.0       | 651.8       | 574.7       | 567.0       | 593.7       | 393.9 |
| 20- 30   | 10    |     |             |             |             | 143.0    | 151.4       | 196.3       | 263.6       | 266.1       | 239.8       | 286.1       | 387.3       | 381.2       | 349.9       | 354.3       | 377.7       | 278.4 |
| 30- 45   | 15    |     |             |             |             | 121.9    | 126.4       | 137.3       | 158.8       | 167.9       | 167.2       | 192.9       | 243.0       | 246.2       | 234.1       | 241.0       | 256.9       | 188.8 |
| 45- 60   | 15    |     |             |             |             | 106.2    | 108.4       | 102.5       | 109.4       | 116.5       | 121.7       | 137.4       | 163.5       | 169.2       | 166.7       | 171.8       | 179.3       | 129.9 |
| 60- 75   | 15    |     |             |             |             | 84.6     | 86.0        | 82.0        | 84.7        | 89.4        | 94.8        | 105.5       | 121.1       | 127.3       | 127.3       | 129.4       | 131.4       | 91.8  |
| 75-95    | 20    |     |             |             |             | 69.0     | 69.4        | 66.9        | 67.6        | 70.6        | 74.7        | 81.9        | 92.2        | 97.2        | 97.3        | 96.8        | 95.5        | 63.7  |
| 95- 115  | 20    |     |             |             |             | 61.4     | 60.2        | 56.1        | 55.4        | 56.9        | 60.2        | 65.1        | 71.3        | 74.9        | 74.2        | 72.1        | 69.4        | 44.1  |
| 115- 125 | 10    |     |             |             |             | 56.5     | 55.0        | 50.1        | 49.1        | 50.0        | 52.2        | 56.1        | 60.2        | 63.1        | 61.8        | 59.1        | 56.2        | 34.4  |
| 125- 150 | 25    |     |             |             |             | 46.7     | 45.4        | 43.4        | 43.2        | 43.5        | 45.1        | 47.5        | 50.7        | 52.4        | 50.9        | 48.1        | 45.4        | 27.1  |
| 150- 175 | 25    |     |             |             |             | 37.9     | 37.1        | 36.3        | 36.2        | 36.6        | 36.8        | 38.4        | 40.9        | 41.3        | 39.4        | 36.8        | 34.4        | 19.8  |
| 175-200  | 25    |     |             |             |             | 31.6     | 30.9        | 30.7        | 30.5        | 30.4        | 30.8        | 32.1        | 33.4        | 33.1        | 31.1        | 29.0        | 27.0        | 14.8  |
| 200-225  | 25    |     |             |             |             | 26.7     | 25.9        | 25.4        | 25.6        | 25.6        | 26.0        | 27.2        | 27.6        | 27.4        | 25.2        | 23.3        | 21.5        | 11.4  |

|          |       |     |             |             |             |        |             |             | . ,         | <b>—</b> •  |             | o 1 <b>-</b> |             | Т           | able A      | 5.2 (cor    | ntinuatio   | on)   |
|----------|-------|-----|-------------|-------------|-------------|--------|-------------|-------------|-------------|-------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|-------|
|          |       |     | Equiva      | alent do    | se rate     | in the | D acce      | ess sce     | nario to    | r = 2       | y, t= 10    | 0 d — I      | RICr        | emove       | d           |             |             |       |
| R/Z,     |       | 280 | 280-<br>290 | 290-<br>315 | 315-<br>340 | 340    | 340-<br>350 | 350-<br>365 | 365-<br>380 | 380-<br>405 | 405-<br>430 | 430-<br>480  | 480-<br>530 | 530-<br>580 | 580-<br>630 | 630-<br>660 | 660-<br>670 | 670   |
| cm       | dR∖dZ | 0   | 10          | 25          | 25          | 0      | 10          | 15          | 15          | 25          | 25          | 50           | 50          | 50          | 50          | 30          | 10          | 0     |
| 0- 5     | 5     |     |             |             |             |        |             |             |             |             |             |              |             |             |             |             |             |       |
| 5- 10    | 5     |     |             |             |             | 114.5  | 125.0       | 261.1       | 940.3       | 529.1       | 354.5       | 487.0        | 805.6       | 720.3       | 608.1       | 585.5       | 596.0       | 366.2 |
| 10- 20   | 10    |     |             |             |             | 101.6  | 106.1       | 160.8       | 292.5       | 249.0       | 192.2       | 243.7        | 364.6       | 342.8       | 303.2       | 306.2       | 328.2       | 229.2 |
| 20- 30   | 10    |     |             |             |             | 81.9   | 84.7        | 106.8       | 140.6       | 139.9       | 125.5       | 150.6        | 205.0       | 201.5       | 186.8       | 195.5       | 218.3       | 178.8 |
| 30- 45   | 15    |     |             |             |             | 70.2   | 72.2        | 75.5        | 85.9        | 89.5        | 88.6        | 102.6        | 128.9       | 131.3       | 126.5       | 134.7       | 148.8       | 119.0 |
| 45- 60   | 15    |     |             |             |             | 61.7   | 63.0        | 57.6        | 60.2        | 62.9        | 65.1        | 73.7         | 87.2        | 90.8        | 90.7        | 96.1        | 102.6       | 78.9  |
| 60- 75   | 15    |     |             |             |             | 49.4   | 50.0        | 46.5        | 47.2        | 48.9        | 51.4        | 56.8         | 65.1        | 68.8        | 69.7        | 72.3        | 74.5        | 54.9  |
| 75-95    | 20    |     |             |             |             | 40.8   | 40.7        | 38.3        | 38.4        | 38.9        | 40.9        | 44.5         | 49.9        | 52.9        | 53.5        | 53.7        | 53.8        | 37.7  |
| 95- 115  | 20    |     |             |             |             | 36.4   | 35.3        | 32.4        | 31.6        | 31.9        | 32.9        | 35.8         | 39.0        | 40.9        | 40.9        | 40.0        | 38.8        | 25.4  |
| 115- 125 | 10    |     |             |             |             | 33.3   | 32.3        | 28.7        | 27.9        | 28.1        | 29.0        | 31.1         | 33.0        | 34.6        | 34.1        | 32.5        | 31.2        | 19.7  |
| 125- 150 | 25    |     |             |             |             | 27.7   | 26.6        | 25.4        | 24.6        | 24.6        | 25.4        | 26.4         | 27.9        | 29.0        | 28.0        | 26.4        | 25.0        | 15.4  |
| 150- 175 | 25    |     |             |             |             | 22.5   | 22.1        | 21.3        | 20.7        | 20.6        | 20.8        | 21.4         | 22.5        | 22.8        | 21.6        | 20.1        | 18.8        | 11.1  |
| 175-200  | 25    |     |             |             |             | 18.6   | 18.1        | 17.7        | 17.8        | 17.4        | 17.5        | 18.1         | 18.6        | 18.3        | 17.0        | 16.0        | 14.4        | 7.9   |
| 200-225  | 25    |     |             |             |             | 15.7   | 15.3        | 14.7        | 14.6        | 14.8        | 14.7        | 15.3         | 15.4        | 15.1        | 13.5        | 12.8        | 11.4        | 5.9   |



Fig. A5.3. Detector opening layout to calculations of access dose rate – TRT C, LAr EndCap removed.

Table A5.3

|          |       |     |             |             |             |       |             |             |             | <u> </u>    |             | ,           |             |             |             |             |             |        |
|----------|-------|-----|-------------|-------------|-------------|-------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------|
| R/Z,     |       | 280 | 280-<br>290 | 290-<br>315 | 315-<br>340 | 340   | 340-<br>350 | 350-<br>365 | 365-<br>380 | 380-<br>405 | 405-<br>430 | 430-<br>480 | 480-<br>530 | 530-<br>580 | 580-<br>630 | 630-<br>660 | 660-<br>670 | 670    |
| cm       | dR∖dZ | 0   | 10          | 25          | 25          | 0     | 10          | 15          | 15          | 25          | 25          | 50          | 50          | 50          | 50          | 30          | 10          | 0      |
| 0- 5     | 5     |     |             |             |             |       |             |             |             |             |             |             |             |             |             |             |             |        |
| 5- 10    | 5     |     |             |             |             | 393.7 | 443.3       | 1044.2      | 4028.5      | 2328.1      | 1563.2      | 2080.9      | 3318.0      | 2975.3      | 2493.0      | 2269.4      | 2165.8      | 1072.0 |
| 10-20    | 10    |     |             |             |             | 342.3 | 377.5       | 634.3       | 1227.6      | 1063.0      | 816.6       | 1013.7      | 1477.5      | 1376.1      | 1171.4      | 1063.9      | 1016.2      | 503.5  |
| 20- 30   | 10    |     |             |             |             | 276.8 | 299.3       | 407.4       | 567.0       | 574.7       | 514.3       | 608.1       | 813.0       | 782.4       | 680.6       | 617.6       | 588.7       | 292.1  |
| 30- 45   | 15    |     |             |             |             | 229.1 | 240.8       | 276.3       | 329.5       | 352.1       | 350.0       | 401.6       | 500.0       | 493.0       | 438.6       | 399.1       | 381.0       | 188.9  |
| 45- 60   | 15    |     |             |             |             | 192.1 | 198.2       | 199.9       | 219.5       | 236.8       | 248.9       | 280.4       | 330.2       | 330.6       | 300.5       | 275.0       | 262.9       | 130.3  |
| 60- 75   | 15    |     |             |             |             | 153.1 | 156.6       | 156.9       | 166.2       | 178.3       | 190.4       | 211.8       | 240.5       | 242.6       | 224.1       | 206.2       | 197.9       | 97.9   |
| 75-95    | 20    |     |             |             |             | 125.0 | 126.3       | 125.8       | 130.3       | 138.1       | 147.6       | 162.2       | 178.4       | 181.1       | 169.1       | 157.0       | 150.9       | 74.6   |
| 95- 115  | 20    |     |             |             |             | 110.5 | 109.0       | 104.4       | 105.1       | 109.5       | 116.2       | 125.3       | 135.3       | 137.1       | 129.3       | 120.8       | 116.9       | 57.7   |
| 115- 125 | 10    |     |             |             |             | 100.5 | 98.9        | 92.2        | 91.7        | 94.7        | 99.3        | 106.4       | 113.2       | 114.5       | 108.6       | 102.0       | 98.7        | 48.5   |
| 125-150  | 25    |     |             |             |             | 83.4  | 81.8        | 79.5        | 79.3        | 81.0        | 84.3        | 89.6        | 94.2        | 95.0        | 90.5        | 85.3        | 82.7        | 40.7   |
| 150- 175 | 25    |     |             |             |             | 67.7  | 66.5        | 65.4        | 65.3        | 66.5        | 68.3        | 71.7        | 74.8        | 75.2        | 71.8        | 67.9        | 66.1        | 32.4   |
| 175-200  | 25    |     |             |             |             | 55.8  | 54.8        | 54.9        | 55.3        | 55.9        | 57.4        | 59.5        | 61.1        | 61.2        | 58.6        | 55.7        | 54.1        | 26.5   |
| 200-225  | 25    |     |             |             |             | 47.3  | 46.2        | 46.2        | 46.9        | 47.2        | 48.2        | 49.6        | 51.0        | 51.0        | 48.7        | 46.4        | 45.1        | 22.1   |

Equivalent dose rate in the ID access scenario for T= 2 y, t= 5 d -- TRT C, LAr EndCap removed

Table A5.3 (continuation)

| R/Z,     |       | 280 | 280-<br>290 | 290-<br>315 | 315-<br>340 | 340   | 340-<br>350 | 350-<br>365 | 365-<br>380 | 380-<br>405 | 405-<br>430 | 430-<br>480 | 480-<br>530 | 530-<br>580 | 580-<br>630 | 630-<br>660 | 660-<br>670 | 670   |
|----------|-------|-----|-------------|-------------|-------------|-------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------|
| cm       | dR∖dZ | 0   | 10          | 25          | 25          | 0     | 10          | 15          | 15          | 25          | 25          | 50          | 50          | 50          | 50          | 30          | 10          | 0     |
| 0- 5     | 5     |     |             |             |             |       |             |             |             |             |             |             |             |             |             |             |             |       |
| 5- 10    | 5     |     |             |             |             | 263.6 | 293.2       | 669.0       | 2559.4      | 1471.6      | 988.1       | 1323.8      | 2134.4      | 1911.5      | 1591.5      | 1438.3      | 1370.5      | 679.5 |
| 10- 20   | 10    |     |             |             |             | 229.4 | 249.3       | 408.3       | 782.0       | 674.4       | 518.2       | 647.0       | 949.9       | 882.9       | 747.3       | 675.5       | 643.2       | 318.9 |
| 20- 30   | 10    |     |             |             |             | 185.0 | 198.4       | 264.2       | 362.9       | 366.5       | 327.9       | 388.9       | 522.8       | 502.1       | 434.1       | 392.4       | 373.4       | 185.1 |
| 30- 45   | 15    |     |             |             |             | 155.2 | 162.3       | 180.7       | 212.8       | 226.1       | 224.1       | 257.5       | 321.6       | 316.4       | 279.9       | 253.6       | 241.6       | 119.8 |
| 45- 60   | 15    |     |             |             |             | 132.4 | 135.9       | 132.3       | 142.8       | 153.5       | 160.3       | 180.2       | 212.4       | 212.4       | 192.0       | 174.9       | 167.3       | 82.9  |
| 60- 75   | 15    |     |             |             |             | 105.1 | 106.8       | 104.3       | 109.1       | 116.2       | 123.1       | 136.5       | 154.7       | 155.9       | 143.3       | 131.4       | 125.9       | 62.3  |
| 75-95    | 20    |     |             |             |             | 85.6  | 86.6        | 84.2        | 86.5        | 90.5        | 95.9        | 104.9       | 115.1       | 116.3       | 108.4       | 100.1       | 96.1        | 47.5  |
| 95- 115  | 20    |     |             |             |             | 76.3  | 74.9        | 70.2        | 70.1        | 72.2        | 75.9        | 81.5        | 87.3        | 88.4        | 82.9        | 77.2        | 74.4        | 36.7  |
| 115- 125 | 10    |     |             |             |             | 69.7  | 68.2        | 62.4        | 61.1        | 62.4        | 64.9        | 69.1        | 73.2        | 73.8        | 69.7        | 65.1        | 62.9        | 31.0  |
| 125- 150 | 25    |     |             |             |             | 57.3  | 56.2        | 53.5        | 53.0        | 53.4        | 55.3        | 58.3        | 61.1        | 61.3        | 58.1        | 54.4        | 52.7        | 26.0  |
| 150- 175 | 25    |     |             |             |             | 45.8  | 44.8        | 43.7        | 43.5        | 43.9        | 45.2        | 46.9        | 48.6        | 48.7        | 46.1        | 43.4        | 42.1        | 20.8  |
| 175-200  | 25    |     |             |             |             | 37.8  | 36.8        | 36.8        | 36.9        | 37.1        | 37.7        | 39.0        | 39.9        | 39.7        | 37.5        | 35.6        | 34.6        | 17.0  |
| 200-225  | 25    |     |             |             |             | 32.0  | 31.2        | 31.3        | 31.2        | 31.4        | 31.9        | 32.6        | 33.1        | 33.2        | 31.3        | 29.6        | 28.9        | 14.2  |

Equivalent dose rate in the ID access scenario for T= 2 y, t= 15 d-- TRT C, LAr EndCap removed
Table A5.3 (continuation)

| R/Z,     |       | 280 | 280-<br>290 | 290-<br>315 | 315-<br>340 | 340   | 340-<br>350 | 350-<br>365 | 365-<br>380 | 380-<br>405 | 405-<br>430 | 430-<br>480 | 480-<br>530 | 530-<br>580 | 580-<br>630 | 630-<br>660 | 660-<br>670 | 670   |
|----------|-------|-----|-------------|-------------|-------------|-------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------|
| cm       | dR∖dZ | 0   | 10          | 25          | 25          | 0     | 10          | 15          | 15          | 25          | 25          | 50          | 50          | 50          | 50          | 30          | 10          | 0     |
| 0- 5     | 5     |     |             |             |             |       |             |             |             |             |             |             |             |             |             |             |             |       |
| 5- 10    | 5     |     |             |             |             | 194.3 | 214.0       | 473.3       | 1787.0      | 1018.2      | 682.7       | 924.8       | 1509.3      | 1345.5      | 1106.4      | 995.9       | 947.6       | 469.7 |
| 10- 20   | 10    |     |             |             |             | 169.2 | 181.2       | 289.0       | 546.4       | 468.9       | 360.2       | 452.9       | 671.4       | 621.5       | 520.8       | 467.9       | 445.3       | 220.7 |
| 20- 30   | 10    |     |             |             |             | 135.6 | 143.9       | 188.4       | 255.1       | 256.7       | 229.2       | 273.0       | 369.0       | 353.4       | 302.7       | 272.2       | 258.8       | 128.3 |
| 30- 45   | 15    |     |             |             |             | 115.1 | 119.5       | 130.1       | 151.0       | 159.4       | 157.6       | 181.3       | 227.0       | 222.7       | 195.3       | 176.4       | 167.9       | 83.0  |
| 45- 60   | 15    |     |             |             |             | 100.1 | 102.2       | 96.1        | 102.5       | 109.0       | 113.3       | 127.3       | 150.0       | 149.4       | 134.2       | 121.9       | 116.2       | 57.4  |
| 60- 75   | 15    |     |             |             |             | 79.2  | 80.5        | 76.3        | 78.7        | 82.9        | 87.6        | 96.8        | 109.2       | 109.7       | 100.2       | 91.7        | 87.5        | 43.3  |
| 75-95    | 20    |     |             |             |             | 64.4  | 64.8        | 62.0        | 62.6        | 65.2        | 68.6        | 74.3        | 81.4        | 82.0        | 75.7        | 70.0        | 66.9        | 33.1  |
| 95- 115  | 20    |     |             |             |             | 57.7  | 56.3        | 52.1        | 51.1        | 52.1        | 54.5        | 57.9        | 61.8        | 62.2        | 57.9        | 54.1        | 51.8        | 25.6  |
| 115- 125 | 10    |     |             |             |             | 53.1  | 51.5        | 46.3        | 45.0        | 45.3        | 46.6        | 49.2        | 51.9        | 52.1        | 48.7        | 45.7        | 43.8        | 21.7  |
| 125- 150 | 25    |     |             |             |             | 43.3  | 41.9        | 39.7        | 39.0        | 38.8        | 39.7        | 41.5        | 43.4        | 43.3        | 40.8        | 38.4        | 36.8        | 18.2  |
| 150- 175 | 25    |     |             |             |             | 34.3  | 33.4        | 32.4        | 32.0        | 32.2        | 32.3        | 33.6        | 34.7        | 34.5        | 32.6        | 30.5        | 29.3        | 14.6  |
| 175-200  | 25    |     |             |             |             | 28.1  | 27.4        | 27.2        | 27.0        | 26.9        | 27.4        | 28.0        | 28.3        | 28.1        | 26.6        | 24.9        | 24.2        | 12.0  |
| 200-225  | 25    |     |             |             |             | 23.9  | 23.1        | 22.7        | 23.0        | 23.0        | 23.1        | 23.4        | 23.8        | 23.5        | 22.3        | 20.7        | 20.2        | 10.1  |

Equivalent dose rate in the ID access scenario for T= 2 y, t= 30 d--- TRT C, LAr EndCap removed

Table A5.3 (continuation)

| R/Z,     |       | 280 | 280-<br>290 | 290-<br>315 | 315-<br>340 | 340   | 340-<br>350 | 350-<br>365 | 365-<br>380 | 380-<br>405 | 405-<br>430 | 430-<br>480 | 480-<br>530 | 530-<br>580 | 580-<br>630 | 630-<br>660 | 660-<br>670 | 670   |
|----------|-------|-----|-------------|-------------|-------------|-------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------|
| cm       | dR∖dZ | 0   | 10          | 25          | 25          | 0     | 10          | 15          | 15          | 25          | 25          | 50          | 50          | 50          | 50          | 30          | 10          | 0     |
| 0- 5     | 5     |     |             |             |             |       |             |             |             |             |             |             |             |             |             |             |             |       |
| 5- 10    | 5     |     |             |             |             | 109.6 | 120.1       | 255.9       | 934.6       | 522.8       | 347.4       | 478.1       | 792.8       | 700.1       | 569.7       | 509.2       | 482.1       | 239.0 |
| 10- 20   | 10    |     |             |             |             | 97.0  | 101.3       | 155.8       | 287.0       | 243.0       | 185.4       | 235.2       | 352.4       | 323.7       | 268.4       | 239.4       | 226.7       | 112.4 |
| 20- 30   | 10    |     |             |             |             | 77.4  | 80.2        | 102.0       | 135.4       | 134.2       | 119.0       | 142.5       | 193.6       | 184.2       | 156.2       | 139.4       | 131.9       | 65.4  |
| 30- 45   | 15    |     |             |             |             | 66.0  | 68.0        | 71.1        | 81.1        | 84.2        | 82.7        | 95.3        | 118.9       | 116.4       | 100.9       | 90.4        | 85.7        | 42.4  |
| 45- 60   | 15    |     |             |             |             | 58.0  | 59.2        | 53.5        | 55.9        | 58.2        | 59.9        | 67.4        | 78.7        | 78.1        | 69.3        | 62.4        | 59.4        | 29.4  |
| 60- 75   | 15    |     |             |             |             | 46.0  | 46.6        | 42.9        | 43.4        | 44.9        | 46.9        | 51.4        | 57.5        | 57.5        | 51.8        | 47.0        | 44.8        | 22.2  |
| 75-95    | 20    |     |             |             |             | 37.9  | 37.8        | 35.3        | 35.2        | 35.6        | 37.1        | 39.7        | 43.1        | 43.0        | 39.3        | 35.8        | 34.4        | 16.9  |
| 95- 115  | 20    |     |             |             |             | 34.1  | 32.9        | 30.0        | 28.9        | 28.9        | 29.4        | 31.2        | 32.9        | 32.8        | 30.1        | 27.8        | 26.7        | 12.9  |
| 115- 125 | 10    |     |             |             |             | 31.2  | 30.1        | 26.4        | 25.3        | 25.2        | 25.4        | 26.6        | 27.6        | 27.5        | 25.4        | 23.4        | 22.6        | 11.0  |
| 125- 150 | 25    |     |             |             |             | 25.6  | 24.5        | 23.0        | 21.9        | 21.6        | 21.9        | 22.5        | 23.2        | 23.0        | 21.3        | 19.7        | 19.1        | 9.2   |
| 150-175  | 25    |     |             |             |             | 20.2  | 19.7        | 18.7        | 18.0        | 17.8        | 17.9        | 18.4        | 18.5        | 18.2        | 17.0        | 15.7        | 15.3        | 7.4   |
| 175-200  | 25    |     |             |             |             | 16.3  | 15.8        | 15.5        | 15.5        | 15.2        | 15.3        | 15.5        | 15.2        | 15.0        | 13.8        | 13.0        | 12.5        | 6.0   |
| 200-225  | 25    |     |             |             |             | 14.0  | 13.6        | 13.1        | 13.0        | 13.1        | 12.8        | 12.8        | 12.9        | 12.5        | 11.5        | 10.9        | 10.5        | 5.0   |

Equivalent dose rate in the ID access scenario for T= 2 y, t= 100 d-- TRT C, LAr EndCap removed



Fig. A5.4. Detector opening layout to calculations of access dose rate – TRT C, LAr EndCap, and VA removed.

Table A5.4

|          |       |     |             |             |             |       |             |             | , •         |             |             | ,           | , e.e.,     |             |             |             |             |     |
|----------|-------|-----|-------------|-------------|-------------|-------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----|
| R/Z,     |       | 280 | 280-<br>290 | 290-<br>315 | 315-<br>340 | 340   | 340-<br>350 | 350-<br>365 | 365-<br>380 | 380-<br>405 | 405-<br>430 | 430-<br>480 | 480-<br>530 | 530-<br>580 | 580-<br>630 | 630-<br>660 | 660-<br>670 | 670 |
| cm       | dR∖dZ | 0   | 10          | 25          | 25          | 0     | 10          | 15          | 15          | 25          | 25          | 50          | 50          | 50          | 50          | 30          | 10          | 0   |
| 0- 5     | 5     |     |             |             |             |       |             |             | 60.2        | 26.9        | 17.8        | 13.9        | 9.2         | 6.2         | 4.0         | 2.3         | 2.3         | 0.7 |
| 5- 10    | 5     |     |             |             |             | 106.5 | 89.2        | 70.6        | 46.5        | 26.4        | 17.9        | 13.9        | 9.2         | 6.2         | 4.1         | 2.3         | 2.3         | 0.7 |
| 10- 20   | 10    |     |             |             |             | 85.7  | 72.8        | 49.5        | 36.9        | 25.6        | 17.9        | 13.9        | 9.2         | 6.4         | 4.1         | 2.3         | 2.3         | 0.7 |
| 20- 30   | 10    |     |             |             |             | 62.8  | 56.6        | 41.9        | 33.0        | 24.8        | 18.1        | 13.5        | 9.2         | 6.6         | 4.1         | 2.3         | 2.3         | 0.7 |
| 30- 45   | 15    |     |             |             |             | 61.8  | 58.3        | 39.3        | 30.5        | 23.4        | 18.1        | 13.0        | 9.3         | 6.8         | 4.0         | 2.3         | 2.3         | 0.7 |
| 45- 60   | 15    |     |             |             |             | 63.1  | 61.2        | 37.1        | 28.5        | 22.2        | 17.7        | 12.6        | 9.2         | 6.8         | 4.0         | 2.3         | 2.2         | 0.7 |
| 60- 75   | 15    |     |             |             |             | 49.8  | 48.6        | 33.9        | 26.5        | 21.4        | 16.9        | 12.3        | 9.0         | 6.7         | 3.9         | 2.3         | 2.2         | 0.6 |
| 75-95    | 20    |     |             |             |             | 41.7  | 40.2        | 30.6        | 24.7        | 20.0        | 16.2        | 12.3        | 8.4         | 6.8         | 3.8         | 2.3         | 2.2         | 0.6 |
| 95- 115  | 20    |     |             |             |             | 42.8  | 39.5        | 29.0        | 22.8        | 18.6        | 15.3        | 11.4        | 8.2         | 6.5         | 3.6         | 2.3         | 2.2         | 0.6 |
| 115- 125 | 10    |     |             |             |             | 41.4  | 38.3        | 27.2        | 21.5        | 17.6        | 14.4        | 11.2        | 8.0         | 6.2         | 3.6         | 2.3         | 2.2         | 0.5 |
| 125- 150 | 25    |     |             |             |             | 32.0  | 29.4        | 23.7        | 19.5        | 16.1        | 13.3        | 10.7        | 7.7         | 5.9         | 3.5         | 2.2         | 2.1         | 0.5 |
| 150- 175 | 25    |     |             |             |             | 24.7  | 22.7        | 19.3        | 16.5        | 14.0        | 11.6        | 9.4         | 7.3         | 5.6         | 3.4         | 2.2         | 2.0         | 0.5 |
| 175- 200 | 25    |     |             |             |             | 19.1  | 17.5        | 16.0        | 14.3        | 12.4        | 10.8        | 8.9         | 6.6         | 5.2         | 3.2         | 2.2         | 1.8         | 0.5 |
| 200-225  | 25    |     |             |             |             | 15.4  | 14.0        | 12.8        | 11.9        | 10.3        | 9.0         | 7.5         | 6.1         | 4.8         | 2.9         | 2.0         | 1.7         | 0.5 |

Equivalent dose rate in the ID access scenario for T= 2 y, t= 5 d – TRT C, LAr EndCap, and VA removed

Table A5.4 (continuation)

| R/Z,     |       | 280 | 280-<br>290 | 290-<br>315 | 315-<br>340 | 340  | 340-<br>350 | 350-<br>365 | 365-<br>380 | 380-<br>405 | 405-<br>430 | 430-<br>480 | 480-<br>530 | 530-<br>580 | 580-<br>630 | 630-<br>660 | 660-<br>670 | 670 |
|----------|-------|-----|-------------|-------------|-------------|------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----|
| cm       | dR∖dZ | 0   | 10          | 25          | 25          | 0    | 10          | 15          | 15          | 25          | 25          | 50          | 50          | 50          | 50          | 30          | 10          | 0   |
| 0- 5     | 5     |     |             |             |             |      |             |             | 51.0        | 21.0        | 14.1        | 10.8        | 7.2         | 4.7         | 3.0         | 1.8         | 1.6         | 0.5 |
| 5- 10    | 5     |     |             |             |             | 82.8 | 70.6        | 59.0        | 38.6        | 20.8        | 14.2        | 10.8        | 7.2         | 4.7         | 3.0         | 1.8         | 1.6         | 0.5 |
| 10- 20   | 10    |     |             |             |             | 67.7 | 57.5        | 40.0        | 29.8        | 20.2        | 14.1        | 10.8        | 7.2         | 4.9         | 3.0         | 1.8         | 1.6         | 0.5 |
| 20- 30   | 10    |     |             |             |             | 49.8 | 45.1        | 33.5        | 25.9        | 19.4        | 14.2        | 10.6        | 7.2         | 5.0         | 2.9         | 1.8         | 1.6         | 0.5 |
| 30- 45   | 15    |     |             |             |             | 49.4 | 46.9        | 31.0        | 23.7        | 18.3        | 14.0        | 10.1        | 7.2         | 5.1         | 2.9         | 1.7         | 1.6         | 0.5 |
| 45- 60   | 15    |     |             |             |             | 50.8 | 49.3        | 29.5        | 21.9        | 17.5        | 13.7        | 9.7         | 7.0         | 5.2         | 3.0         | 1.7         | 1.6         | 0.5 |
| 60- 75   | 15    |     |             |             |             | 39.7 | 38.4        | 26.5        | 20.7        | 16.7        | 13.1        | 9.5         | 6.8         | 5.2         | 3.0         | 1.7         | 1.6         | 0.5 |
| 75-95    | 20    |     |             |             |             | 32.9 | 32.0        | 23.8        | 19.4        | 15.6        | 12.5        | 9.4         | 6.5         | 5.1         | 3.0         | 1.7         | 1.6         | 0.5 |
| 95- 115  | 20    |     |             |             |             | 33.4 | 30.8        | 22.4        | 17.9        | 14.4        | 11.8        | 8.9         | 6.3         | 5.1         | 2.8         | 1.7         | 1.6         | 0.5 |
| 115- 125 | 10    |     |             |             |             | 32.2 | 29.7        | 21.1        | 16.5        | 13.4        | 10.9        | 8.5         | 6.2         | 4.8         | 2.8         | 1.6         | 1.6         | 0.5 |
| 125- 150 | 25    |     |             |             |             | 24.7 | 22.9        | 18.1        | 15.0        | 12.1        | 10.1        | 8.1         | 6.0         | 4.6         | 2.7         | 1.6         | 1.5         | 0.5 |
| 150- 175 | 25    |     |             |             |             | 18.5 | 17.0        | 14.5        | 12.5        | 10.6        | 9.1         | 7.2         | 5.5         | 4.3         | 2.5         | 1.6         | 1.4         | 0.5 |
| 175-200  | 25    |     |             |             |             | 14.5 | 13.1        | 12.1        | 10.9        | 9.4         | 8.0         | 6.7         | 5.2         | 4.0         | 2.3         | 1.6         | 1.4         | 0.5 |
| 200-225  | 25    |     |             |             |             | 11.7 | 10.7        | 10.0        | 9.0         | 7.9         | 6.9         | 5.8         | 4.5         | 3.8         | 2.2         | 1.4         | 1.3         | 0.5 |

Equivalent dose rate in the ID access scenario for T= 2 y, t= 15 d – TRT C, LAr EndCap, and VA removed

Table A5.4 (continuation)

|          |       |     | 1           |             | 1           |      |             |             |             |             |             | · ·         |             | <i>.</i>    |             |             |             |     |
|----------|-------|-----|-------------|-------------|-------------|------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----|
| R/Z,     |       | 280 | 280-<br>290 | 290-<br>315 | 315-<br>340 | 340  | 340-<br>350 | 350-<br>365 | 365-<br>380 | 380-<br>405 | 405-<br>430 | 430-<br>480 | 480-<br>530 | 530-<br>580 | 580-<br>630 | 630-<br>660 | 660-<br>670 | 670 |
| cm       | dR∖dZ | 0   | 10          | 25          | 25          | 0    | 10          | 15          | 15          | 25          | 25          | 50          | 50          | 50          | 50          | 30          | 10          | 0   |
| 0- 5     | 5     |     |             |             |             |      |             |             | 46.3        | 17.9        | 12.0        | 8.8         | 6.1         | 4.1         | 2.5         | 1.6         | 1.6         | 0.5 |
| 5- 10    | 5     |     |             |             |             | 69.0 | 59.7        | 53.5        | 34.2        | 17.6        | 12.0        | 8.8         | 6.0         | 4.1         | 2.5         | 1.6         | 1.6         | 0.5 |
| 10-20    | 10    |     |             |             |             | 57.1 | 48.4        | 34.9        | 25.7        | 17.2        | 12.0        | 8.8         | 6.0         | 4.1         | 2.5         | 1.6         | 1.6         | 0.5 |
| 20- 30   | 10    |     |             |             |             | 42.2 | 38.0        | 28.8        | 22.0        | 16.4        | 11.9        | 8.7         | 6.0         | 4.3         | 2.5         | 1.6         | 1.6         | 0.5 |
| 30- 45   | 15    |     |             |             |             | 41.7 | 39.6        | 26.4        | 20.2        | 15.5        | 11.9        | 8.4         | 6.0         | 4.3         | 2.3         | 1.6         | 1.6         | 0.5 |
| 45- 60   | 15    |     |             |             |             | 43.5 | 42.1        | 24.8        | 18.7        | 14.8        | 11.4        | 8.1         | 5.9         | 4.3         | 2.4         | 1.6         | 1.5         | 0.5 |
| 60-75    | 15    |     |             |             |             | 33.7 | 33.0        | 22.3        | 17.4        | 13.9        | 11.0        | 8.1         | 5.5         | 4.2         | 2.4         | 1.6         | 1.4         | 0.5 |
| 75-95    | 20    |     |             |             |             | 27.8 | 26.9        | 20.0        | 16.0        | 13.1        | 10.5        | 7.7         | 5.4         | 4.2         | 2.3         | 1.6         | 1.4         | 0.5 |
| 95- 115  | 20    |     |             |             |             | 27.9 | 25.7        | 18.8        | 14.8        | 11.9        | 9.9         | 7.3         | 5.2         | 3.9         | 2.1         | 1.6         | 1.2         | 0.5 |
| 115- 125 | 10    |     |             |             |             | 26.9 | 24.8        | 17.6        | 13.9        | 11.3        | 9.0         | 6.9         | 5.1         | 3.8         | 2.1         | 1.6         | 1.2         | 0.5 |
| 125- 150 | 25    |     |             |             |             | 20.6 | 18.8        | 15.0        | 12.6        | 10.1        | 8.2         | 6.5         | 4.9         | 3.7         | 2.2         | 1.6         | 1.2         | 0.5 |
| 150-175  | 25    |     |             |             |             | 15.3 | 14.1        | 12.0        | 10.4        | 8.9         | 7.2         | 5.9         | 4.6         | 3.6         | 2.2         | 1.4         | 1.1         | 0.5 |
| 175-200  | 25    |     |             |             |             | 11.9 | 10.9        | 9.9         | 8.9         | 7.7         | 6.7         | 5.5         | 4.2         | 3.3         | 2.1         | 1.2         | 1.1         | 0.5 |
| 200-225  | 25    |     |             |             |             | 9.8  | 8.9         | 7.9         | 7.5         | 6.7         | 5.7         | 4.7         | 3.8         | 3.0         | 2.0         | 1.1         | 1.0         | 0.5 |

Equivalent dose rate in the ID access scenario for T= 2 y, t= 30 d - TRT C, LAr EndCap, and VA removed

Table A5.4 (continuation)

|          |       |     |             |             |             |      |             |             |             |             |             | ,           |             | •           |             |             |             |     |
|----------|-------|-----|-------------|-------------|-------------|------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----|
| R/Z,     |       | 280 | 280-<br>290 | 290-<br>315 | 315-<br>340 | 340  | 340-<br>350 | 350-<br>365 | 365-<br>380 | 380-<br>405 | 405-<br>430 | 430-<br>480 | 480-<br>530 | 530-<br>580 | 580-<br>630 | 630-<br>660 | 660-<br>670 | 670 |
| cm       | dR\dZ | 0   | 10          | 25          | 25          | 0    | 10          | 15          | 15          | 25          | 25          | 50          | 50          | 50          | 50          | 30          | 10          | 0   |
| 0- 5     | 5     |     |             |             |             |      |             |             | 37.5        | 12.3        | 8.2         | 6.0         | 3.9         | 2.8         | 1.6         | 0.9         | 0.8         | 0.3 |
| 5- 10    | 5     |     |             |             |             | 45.6 | 41.2        | 42.0        | 26.4        | 12.3        | 8.2         | 6.0         | 3.9         | 2.8         | 1.6         | 0.9         | 0.8         | 0.3 |
| 10- 20   | 10    |     |             |             |             | 39.6 | 33.3        | 25.4        | 18.7        | 11.8        | 8.3         | 6.0         | 3.9         | 2.9         | 1.6         | 0.9         | 0.8         | 0.3 |
| 20- 30   | 10    |     |             |             |             | 29.4 | 25.9        | 20.1        | 15.6        | 11.3        | 8.2         | 5.9         | 3.9         | 2.9         | 1.6         | 0.9         | 0.8         | 0.3 |
| 30- 45   | 15    |     |             |             |             | 28.3 | 27.0        | 18.0        | 13.9        | 10.5        | 8.0         | 5.9         | 3.8         | 2.9         | 1.6         | 0.9         | 0.8         | 0.3 |
| 45- 60   | 15    |     |             |             |             | 28.9 | 28.3        | 16.9        | 12.9        | 9.8         | 7.6         | 5.8         | 3.7         | 2.8         | 1.5         | 0.8         | 0.8         | 0.3 |
| 60- 75   | 15    |     |             |             |             | 22.7 | 22.2        | 15.1        | 11.9        | 9.4         | 7.5         | 5.5         | 3.7         | 2.9         | 1.5         | 0.8         | 0.8         | 0.3 |
| 75- 95   | 20    |     |             |             |             | 19.1 | 18.3        | 13.7        | 11.2        | 8.7         | 7.1         | 5.3         | 3.7         | 2.8         | 1.5         | 0.8         | 0.8         | 0.2 |
| 95- 115  | 20    |     |             |             |             | 18.7 | 17.1        | 12.9        | 10.2        | 8.2         | 6.4         | 5.0         | 3.6         | 2.7         | 1.4         | 0.8         | 0.8         | 0.1 |
| 115- 125 | 10    |     |             |             |             | 17.8 | 16.4        | 11.6        | 9.3         | 7.6         | 6.0         | 4.8         | 3.4         | 2.6         | 1.4         | 0.8         | 0.8         | 0.1 |
| 125- 150 | 25    |     |             |             |             | 13.9 | 12.6        | 10.3        | 8.3         | 6.8         | 5.7         | 4.4         | 3.3         | 2.5         | 1.4         | 0.8         | 0.8         | 0.1 |
| 150- 175 | 25    |     |             |             |             | 10.4 | 9.8         | 8.2         | 6.9         | 5.9         | 5.0         | 4.2         | 3.0         | 2.3         | 1.4         | 0.8         | 0.8         | 0.1 |
| 175- 200 | 25    |     |             |             |             | 7.9  | 7.3         | 6.7         | 6.1         | 5.3         | 4.6         | 3.9         | 2.8         | 2.2         | 1.1         | 0.8         | 0.7         | 0.1 |
| 200-225  | 25    |     |             |             |             | 6.7  | 6.2         | 5.5         | 5.1         | 4.7         | 3.9         | 3.2         | 2.6         | 2.0         | 1.1         | 0.8         | 0.6         | 0.1 |

Equivalent dose rate in the ID access scenario for T= 2 y, t= 100 d – TRT C, LAr EndCap, and VA removed



Fig. A5.5. Detector opening layout to calculations of access dose rate – TRT C, LAr EndCap, VA, and Pixel Tipe 2 services removed.

Table A5.5 (continuation)

| Lyu      | Ivalent |      |             |             | 0000 30     |      |             | <u> </u>    | <u> </u>    | (10, L)     |             | $\operatorname{Cap}, v$ | л, апи і    |             | he 7 se     |             | eniove      | u   |
|----------|---------|------|-------------|-------------|-------------|------|-------------|-------------|-------------|-------------|-------------|-------------------------|-------------|-------------|-------------|-------------|-------------|-----|
| R/Z,     |         | 280  | 280-<br>290 | 290-<br>315 | 315-<br>340 | 340  | 340-<br>350 | 350-<br>365 | 365-<br>380 | 380-<br>405 | 405-<br>430 | 430-<br>480             | 480-<br>530 | 530-<br>580 | 580-<br>630 | 630-<br>660 | 660-<br>670 | 670 |
| cm       | dR∖dZ   | 0    | 10          | 25          | 25          | 0    | 10          | 15          | 15          | 25          | 25          | 50                      | 50          | 50          | 50          | 30          | 10          | 0   |
| 0- 5     | 5       |      |             |             |             |      |             |             | 54.1        | 22.4        | 14.8        | 12.0                    | 8.2         | 5.5         | 3.5         | 1.9         | 1.9         | 0.6 |
| 5- 10    | 5       |      |             |             |             | 98.4 | 81.1        | 63.1        | 40.3        | 21.9        | 14.9        | 12.0                    | 8.2         | 5.5         | 3.6         | 1.9         | 1.9         | 0.6 |
| 10-20    | 10      |      |             |             |             | 77.0 | 64.1        | 41.6        | 30.6        | 21.1        | 14.9        | 12.0                    | 8.2         | 5.7         | 3.6         | 1.9         | 1.9         | 0.6 |
| 20- 30   | 10      | 42.2 | 41.2        | 38.3        |             | 52.4 | 46.3        | 33.1        | 26.4        | 20.2        | 15.1        | 11.7                    | 8.2         | 5.9         | 3.6         | 1.9         | 1.9         | 0.6 |
| 30- 45   | 15      | 40.5 | 39.4        | 35.2        |             | 37.2 | 34.3        | 28.1        | 23.6        | 18.8        | 15.2        | 11.2                    | 8.3         | 6.2         | 3.5         | 1.9         | 1.9         | 0.6 |
| 45- 60   | 15      | 43.6 | 40.4        | 34.0        | 31.0        | 28.8 | 27.8        | 24.9        | 21.6        | 17.9        | 14.9        | 10.9                    | 8.2         | 6.2         | 3.5         | 1.9         | 1.9         | 0.6 |
| 60- 75   | 15      | 46.8 | 41.5        | 33.7        | 29.2        | 27.1 | 26.4        | 23.7        | 20.3        | 17.4        | 14.3        | 10.7                    | 8.0         | 6.1         | 3.5         | 1.9         | 1.9         | 0.5 |
| 75-95    | 20      | 44.1 | 40.8        | 34.5        | 29.7        | 27.5 | 26.3        | 23.2        | 19.7        | 16.6        | 13.9        | 10.8                    | 7.5         | 6.2         | 3.4         | 1.9         | 1.9         | 0.5 |
| 95- 115  | 20      |      |             |             |             | 34.2 | 31.0        | 23.8        | 19.0        | 15.8        | 13.3        | 10.1                    | 7.3         | 5.9         | 3.2         | 1.9         | 1.9         | 0.5 |
| 115- 125 | 10      |      |             |             |             | 35.1 | 32.0        | 23.2        | 18.4        | 15.2        | 12.6        | 9.9                     | 7.2         | 5.7         | 3.2         | 1.9         | 1.9         | 0.4 |
| 125- 150 | 25      |      |             |             |             | 27.4 | 24.9        | 20.7        | 17.1        | 14.1        | 11.7        | 9.6                     | 6.9         | 5.4         | 3.1         | 1.9         | 1.8         | 0.4 |
| 150- 175 | 25      |      |             |             |             | 21.7 | 19.7        | 17.2        | 14.7        | 12.5        | 10.4        | 8.5                     | 6.6         | 5.1         | 3.0         | 1.9         | 1.7         | 0.4 |
| 175-200  | 25      |      |             |             |             | 17.1 | 15.5        | 14.4        | 12.9        | 11.2        | 9.8         | 8.1                     | 6.1         | 4.8         | 2.8         | 1.9         | 1.5         | 0.4 |
| 200-225  | 25      |      |             |             |             | 14.0 | 12.6        | 11.7        | 10.9        | 9.4         | 8.2         | 6.8                     | 5.6         | 4.4         | 2.6         | 1.7         | 1.4         | 0.4 |

Equivalent dose rate in the ID access scenario for T= 2 y, t= 5 d- TRT C, LAr EndCap, VA, and Pixel Tipe 2 services removed

Table A5.5 (continuation)

| ĽЧ       | livalent | 003610 |             |             | 10033 3     | CENAIL |             | ∠y, ι–      | 15 u-       | $\mathbf{H} \mathbf{U}$ |             | iucap,      | ٧л, ан      |             | TIPE Z      |             | 3 161110    | veu |
|----------|----------|--------|-------------|-------------|-------------|--------|-------------|-------------|-------------|-------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----|
| R/Z,     |          | 280    | 280-<br>290 | 290-<br>315 | 315-<br>340 | 340    | 340-<br>350 | 350-<br>365 | 365-<br>380 | 380-<br>405             | 405-<br>430 | 430-<br>480 | 480-<br>530 | 530-<br>580 | 580-<br>630 | 630-<br>660 | 660-<br>670 | 670 |
| cm       | dR∖dZ    | 0      | 10          | 25          | 25          | 0      | 10          | 15          | 15          | 25                      | 25          | 50          | 50          | 50          | 50          | 30          | 10          | 0   |
| 0- 5     | 5        |        |             |             |             |        |             |             | 45.9        | 17.2                    | 11.5        | 9.2         | 6.3         | 4.2         | 2.6         | 1.5         | 1.3         | 0.4 |
| 5- 10    | 5        |        |             |             |             | 76.1   | 63.9        | 52.8        | 33.4        | 17.0                    | 11.6        | 9.2         | 6.3         | 4.2         | 2.6         | 1.5         | 1.3         | 0.4 |
| 10- 20   | 10       |        |             |             |             | 60.4   | 50.3        | 33.4        | 24.5        | 16.4                    | 11.5        | 9.2         | 6.3         | 4.4         | 2.6         | 1.5         | 1.3         | 0.4 |
| 20- 30   | 10       | 32.8   | 31.9        | 30.3        |             | 41.1   | 36.4        | 26.1        | 20.4        | 15.6                    | 11.6        | 9.0         | 6.3         | 4.5         | 2.5         | 1.5         | 1.3         | 0.4 |
| 30- 45   | 15       | 31.7   | 30.5        | 27.3        |             | 28.9   | 26.8        | 21.6        | 17.8        | 14.5                    | 11.6        | 8.7         | 6.3         | 4.6         | 2.5         | 1.4         | 1.3         | 0.4 |
| 45- 60   | 15       | 34.1   | 31.7        | 26.1        | 23.7        | 22.2   | 21.4        | 19.2        | 16.1        | 13.8                    | 11.4        | 8.3         | 6.2         | 4.7         | 2.6         | 1.4         | 1.3         | 0.4 |
| 60- 75   | 15       | 36.1   | 32.1        | 26.1        | 22.5        | 20.6   | 19.8        | 18.0        | 15.5        | 13.4                    | 10.9        | 8.2         | 6.0         | 4.7         | 2.6         | 1.4         | 1.3         | 0.4 |
| 75-95    | 20       | 33.9   | 31.7        | 26.5        | 22.8        | 20.9   | 20.2        | 17.6        | 15.2        | 12.7                    | 10.5        | 8.1         | 5.7         | 4.6         | 2.6         | 1.4         | 1.3         | 0.4 |
| 95- 115  | 20       |        |             |             |             | 26.1   | 23.6        | 18.1        | 14.7        | 12.0                    | 10.1        | 7.7         | 5.6         | 4.6         | 2.4         | 1.4         | 1.3         | 0.4 |
| 115- 125 | 10       |        |             |             |             | 26.8   | 24.3        | 17.7        | 13.9        | 11.4                    | 9.4         | 7.4         | 5.5         | 4.3         | 2.4         | 1.3         | 1.3         | 0.4 |
| 125- 150 | 25       |        |             |             |             | 20.7   | 19.0        | 15.5        | 12.9        | 10.5                    | 8.8         | 7.2         | 5.3         | 4.2         | 2.4         | 1.3         | 1.2         | 0.4 |
| 150- 175 | 25       |        |             |             |             | 15.9   | 14.5        | 12.7        | 10.9        | 9.3                     | 8.0         | 6.4         | 5.0         | 3.9         | 2.2         | 1.3         | 1.1         | 0.4 |
| 175-200  | 25       |        |             |             |             | 12.7   | 11.5        | 10.8        | 9.7         | 8.4                     | 7.2         | 6.0         | 4.7         | 3.6         | 2.0         | 1.3         | 1.1         | 0.4 |
| 200-225  | 25       |        |             |             |             | 10.6   | 9.6         | 9.1         | 8.1         | 7.1                     | 6.2         | 5.2         | 4.1         | 3.4         | 1.9         | 1.1         | 1.0         | 0.4 |

Equivalent dose rate in the ID access scenario for T= 2 y, t= 15 d- TRT C, LAr EndCap, VA, and Pixel Tipe 2 services removed

Table A5.5 (continuation)

| <u> </u> | uivalem | 00361 |             |             | 000333      | beenand |             | · ∠y, ι–    | <u> 50 u – </u> | $\mathbf{I} \mathbf{V} \mathbf{I} \mathbf{O},$ |             | ucap,       | vA, and     |             |             |             | stemov      |     |
|----------|---------|-------|-------------|-------------|-------------|---------|-------------|-------------|-----------------|------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----|
| R/Z,     |         | 280   | 280-<br>290 | 290-<br>315 | 315-<br>340 | 340     | 340-<br>350 | 350-<br>365 | 365-<br>380     | 380-<br>405                                    | 405-<br>430 | 430-<br>480 | 480-<br>530 | 530-<br>580 | 580-<br>630 | 630-<br>660 | 660-<br>670 | 670 |
| cm       | dR∖dZ   | 0     | 10          | 25          | 25          | 0       | 10          | 15          | 15              | 25                                             | 25          | 50          | 50          | 50          | 50          | 30          | 10          | 0   |
| 0- 5     | 5       |       |             |             |             |         |             |             | 41.8            | 14.6                                           | 9.8         | 7.5         | 5.3         | 3.6         | 2.1         | 1.3         | 1.3         | 0.4 |
| 5- 10    | 5       |       |             |             |             | 63.1    | 53.8        | 48.0        | 29.7            | 14.3                                           | 9.8         | 7.5         | 5.2         | 3.6         | 2.1         | 1.3         | 1.3         | 0.4 |
| 10-20    | 10      |       |             |             |             | 50.9    | 42.2        | 29.2        | 21.1            | 13.9                                           | 9.8         | 7.5         | 5.2         | 3.6         | 2.1         | 1.3         | 1.3         | 0.4 |
| 20- 30   | 10      | 27.6  | 27.1        | 25.9        |             | 34.6    | 30.4        | 22.3        | 17.2            | 13.1                                           | 9.7         | 7.4         | 5.2         | 3.8         | 2.1         | 1.3         | 1.3         | 0.4 |
| 30- 45   | 15      | 26.6  | 25.6        | 23.2        |             | 24.1    | 22.3        | 18.3        | 15.2            | 12.2                                           | 9.8         | 7.1         | 5.2         | 3.8         | 2.0         | 1.3         | 1.3         | 0.4 |
| 45- 60   | 15      | 28.5  | 26.3        | 22.0        | 20.0        | 18.7    | 18.0        | 15.9        | 13.7            | 11.6                                           | 9.4         | 6.9         | 5.2         | 3.8         | 2.1         | 1.3         | 1.2         | 0.4 |
| 60- 75   | 15      | 29.9  | 26.6        | 21.8        | 18.8        | 17.1    | 16.8        | 14.9        | 12.8            | 11.0                                           | 9.1         | 6.9         | 4.8         | 3.8         | 2.1         | 1.3         | 1.1         | 0.4 |
| 75-95    | 20      | 28.0  | 26.2        | 22.5        | 19.0        | 17.3    | 16.6        | 14.5        | 12.4            | 10.6                                           | 8.8         | 6.6         | 4.7         | 3.8         | 2.0         | 1.3         | 1.1         | 0.4 |
| 95- 115  | 20      |       |             |             |             | 21.5    | 19.4        | 15.0        | 12.0            | 9.8                                            | 8.4         | 6.3         | 4.5         | 3.5         | 1.8         | 1.3         | 0.9         | 0.4 |
| 115- 125 | 10      |       |             |             |             | 22.2    | 20.1        | 14.6        | 11.6            | 9.5                                            | 7.7         | 5.9         | 4.5         | 3.4         | 1.8         | 1.3         | 0.9         | 0.4 |
| 125- 150 | 25      |       |             |             |             | 17.1    | 15.3        | 12.7        | 10.7            | 8.7                                            | 7.1         | 5.7         | 4.3         | 3.3         | 1.9         | 1.3         | 0.9         | 0.4 |
| 150- 175 | 25      |       |             |             |             | 13.0    | 11.8        | 10.4        | 9.1             | 7.8                                            | 6.3         | 5.2         | 4.1         | 3.2         | 1.9         | 1.1         | 0.9         | 0.4 |
| 175-200  | 25      |       |             |             |             | 10.4    | 9.4         | 8.8         | 7.9             | 6.8                                            | 6.0         | 4.9         | 3.8         | 3.0         | 1.8         | 0.9         | 0.9         | 0.4 |
| 200-225  | 25      |       |             |             |             | 8.8     | 7.9         | 7.1         | 6.7             | 6.0                                            | 5.1         | 4.2         | 3.4         | 2.7         | 1.7         | 0.9         | 0.8         | 0.4 |

Equivalent dose rate in the ID access scenario for T= 2y, t= 30 d- TRT C, LAr EndCap, VA, and Pixel Tipe 2 services removed

Table A5.5 (continuation)

|          | valunt u | 1030 10 |             |             | 0033 30     | Chano |             | _ y, i—     | 100 u       | $\mathbf{H} \mathbf{U}$ |             | iuoup,      | v/, an      |             | TIPC Z      |             | 3 101110    | vcu |
|----------|----------|---------|-------------|-------------|-------------|-------|-------------|-------------|-------------|-------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----|
| R/Z,     |          | 280     | 280-<br>290 | 290-<br>315 | 315-<br>340 | 340   | 340-<br>350 | 350-<br>365 | 365-<br>380 | 380-<br>405             | 405-<br>430 | 430-<br>480 | 480-<br>530 | 530-<br>580 | 580-<br>630 | 630-<br>660 | 660-<br>670 | 670 |
| cm       | dR∖dZ    | 0       | 10          | 25          | 25          | 0     | 10          | 15          | 15          | 25                      | 25          | 50          | 50          | 50          | 50          | 30          | 10          | 0   |
| 0- 5     | 5        |         |             |             |             |       |             |             | 34.5        | 10.1                    | 6.7         | 5.1         | 3.4         | 2.5         | 1.3         | 0.7         | 0.6         | 0.2 |
| 5- 10    | 5        |         |             |             |             | 41.7  | 37.3        | 38.4        | 23.4        | 10.0                    | 6.7         | 5.1         | 3.4         | 2.5         | 1.3         | 0.7         | 0.6         | 0.2 |
| 10-20    | 10       |         |             |             |             | 35.5  | 29.2        | 21.6        | 15.6        | 9.5                     | 6.8         | 5.1         | 3.4         | 2.6         | 1.3         | 0.7         | 0.6         | 0.2 |
| 20- 30   | 10       | 19.6    | 19.3        | 18.2        |             | 24.4  | 21.0        | 15.8        | 12.4        | 9.0                     | 6.7         | 5.0         | 3.4         | 2.6         | 1.3         | 0.7         | 0.6         | 0.2 |
| 30- 45   | 15       | 18.2    | 17.7        | 15.8        |             | 16.7  | 15.6        | 12.7        | 10.5        | 8.3                     | 6.5         | 5.0         | 3.3         | 2.6         | 1.3         | 0.7         | 0.6         | 0.2 |
| 45- 60   | 15       | 18.9    | 17.6        | 14.9        | 13.4        | 12.5  | 12.3        | 11.0        | 9.5         | 7.6                     | 6.3         | 4.9         | 3.2         | 2.5         | 1.3         | 0.6         | 0.6         | 0.2 |
| 60- 75   | 15       | 19.7    | 17.9        | 14.7        | 12.9        | 11.6  | 11.3        | 10.1        | 8.9         | 7.5                     | 6.2         | 4.7         | 3.2         | 2.6         | 1.3         | 0.6         | 0.6         | 0.2 |
| 75-95    | 20       | 18.8    | 17.5        | 15.1        | 12.9        | 11.9  | 11.3        | 10.0        | 8.7         | 7.0                     | 5.9         | 4.5         | 3.2         | 2.5         | 1.3         | 0.6         | 0.6         | 0.2 |
| 95- 115  | 20       |         |             |             |             | 14.3  | 12.8        | 10.3        | 8.3         | 6.8                     | 5.4         | 4.4         | 3.1         | 2.4         | 1.2         | 0.6         | 0.6         | 0.1 |
| 115- 125 | 10       |         |             |             |             | 14.5  | 13.2        | 9.6         | 7.7         | 6.4                     | 5.1         | 4.2         | 3.0         | 2.3         | 1.2         | 0.6         | 0.6         | 0.1 |
| 125- 150 | 25       |         |             |             |             | 11.5  | 10.2        | 8.7         | 7.0         | 5.8                     | 4.9         | 3.8         | 3.0         | 2.2         | 1.2         | 0.6         | 0.6         | 0.1 |
| 150- 175 | 25       |         |             |             |             | 8.8   | 8.2         | 7.1         | 6.0         | 5.1                     | 4.4         | 3.7         | 2.7         | 2.0         | 1.2         | 0.6         | 0.6         | 0.1 |
| 175-200  | 25       |         |             |             |             | 6.9   | 6.3         | 5.9         | 5.4         | 4.7                     | 4.1         | 3.4         | 2.5         | 2.0         | 0.9         | 0.6         | 0.6         | 0.1 |
| 200-225  | 25       |         |             |             |             | 5.9   | 5.4         | 4.9         | 4.6         | 4.2                     | 3.4         | 2.9         | 2.3         | 1.8         | 0.9         | 0.6         | 0.5         | 0.1 |

Equivalent dose rate in the ID access scenario for T= 2 y, t= 100 d- TRT C, LAr EndCap, VA, and Pixel Tipe 2 services removed



Fig. A5.6. Detector opening layout to calculations of access dose rate – TRT C, LAr EndCap, VA, Pixel Tipe 2 services, Pixel Detector, and VI removed.

Table A5.6 (continuation)

Equivalent dose rate in the ID access scenario for T= 2 y, t= 5 d- TRT C, LAr EndCap, VA, Pixel Tipe 2 services, Pixel Detector, and VI removed

| R/Z,     |       | 280  | 280-<br>290 | 290-<br>315 | 315-<br>340 | 340  | 340-<br>350 | 350-<br>365 | 365-<br>380 | 380-<br>405 | 405-<br>430 | 430-<br>480 | 480-<br>530 | 530-<br>580 | 580-<br>630 | 630-<br>660 | 660-<br>670 | 670 |
|----------|-------|------|-------------|-------------|-------------|------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----|
| cm       | dR∖dZ | 0    | 10          | 25          | 25          | 0    | 10          | 15          | 15          | 25          | 25          | 50          | 50          | 50          | 50          | 30          | 10          | 0   |
| 0-5      | 5     | 31.5 | 30.8        | 26.1        | 23.4        | 21.9 | 20.5        | 18.2        | 17.1        | 15.7        | 11.9        | 10.5        | 7.4         | 4.9         | 3.0         | 1.6         | 1.6         | 0.5 |
| 5- 10    | 5     | 31.5 | 30.9        | 26.1        | 23.5        | 21.9 | 20.6        | 18.2        | 17.1        | 15.5        | 12.0        | 10.5        | 7.4         | 4.9         | 3.1         | 1.6         | 1.6         | 0.5 |
| 10- 20   | 10    | 32.0 | 31.2        | 26.3        | 23.5        | 22.0 | 20.6        | 18.5        | 17.2        | 15.3        | 12.1        | 10.5        | 7.4         | 5.1         | 3.1         | 1.6         | 1.6         | 0.5 |
| 20- 30   | 10    | 33.5 | 32.1        | 26.7        | 23.7        | 22.2 | 20.7        | 18.6        | 17.3        | 15.3        | 12.4        | 10.2        | 7.4         | 5.3         | 3.1         | 1.6         | 1.6         | 0.5 |
| 30- 45   | 15    | 34.7 | 33.3        | 27.6        | 23.9        | 22.2 | 20.8        | 19.0        | 17.3        | 14.9        | 12.8        | 9.8         | 7.5         | 5.6         | 3.0         | 1.6         | 1.6         | 0.5 |
| 45- 60   | 15    | 39.2 | 35.9        | 28.8        | 24.6        | 22.2 | 21.4        | 19.4        | 17.2        | 14.8        | 12.9        | 9.6         | 7.4         | 5.6         | 3.0         | 1.6         | 1.6         | 0.5 |
| 60- 75   | 15    | 43.3 | 38.0        | 29.9        | 25.1        | 22.9 | 22.3        | 19.9        | 17.1        | 14.9        | 12.5        | 9.5         | 7.2         | 5.5         | 3.0         | 1.6         | 1.6         | 0.4 |
| 75-95    | 20    | 41.3 | 38.0        | 31.6        | 26.8        | 24.7 | 23.5        | 20.6        | 17.4        | 14.7        | 12.3        | 9.7         | 6.8         | 5.6         | 3.0         | 1.6         | 1.6         | 0.4 |
| 95- 115  | 20    |      |             |             |             | 32.1 | 29.0        | 21.9        | 17.2        | 14.3        | 12.0        | 9.2         | 6.6         | 5.4         | 2.9         | 1.6         | 1.6         | 0.4 |
| 115- 125 | 10    |      |             |             |             | 33.4 | 30.3        | 21.6        | 16.9        | 13.9        | 11.4        | 9.0         | 6.5         | 5.2         | 2.9         | 1.6         | 1.6         | 0.3 |
| 125- 150 | 25    |      |             |             |             | 26.0 | 23.5        | 19.3        | 15.8        | 12.9        | 10.7        | 8.8         | 6.3         | 4.9         | 2.8         | 1.6         | 1.5         | 0.3 |
| 150- 175 | 25    |      |             |             |             | 20.6 | 18.6        | 16.1        | 13.7        | 11.6        | 9.6         | 7.8         | 6.0         | 4.6         | 2.7         | 1.6         | 1.5         | 0.3 |
| 175-200  | 25    |      |             |             |             | 16.1 | 14.6        | 13.5        | 12.0        | 10.4        | 9.0         | 7.4         | 5.6         | 4.4         | 2.5         | 1.6         | 1.3         | 0.3 |
| 200-225  | 25    |      |             |             |             | 13.2 | 11.8        | 10.9        | 10.1        | 8.7         | 7.5         | 6.2         | 5.1         | 4.1         | 2.3         | 1.5         | 1.2         | 0.3 |

Table A5.6 (continuation)

Equivalent dose rate in the ID access scenario for T= 2 y, t= 15 d- TRT C, LAr EndCap, VA, Pixel Tipe 2 services, Pixel Detector, and VI removed

| R/Z,     |       | 280  | 280-<br>290 | 290-<br>315 | 315-<br>340 | 340  | 340-<br>350 | 350-<br>365 | 365-<br>380 | 380-<br>405 | 405-<br>430 | 430-<br>480 | 480-<br>530 | 530-<br>580 | 580-<br>630 | 630-<br>660 | 660-<br>670 | 670 |
|----------|-------|------|-------------|-------------|-------------|------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----|
| cm       | dR∖dZ | 0    | 10          | 25          | 25          | 0    | 10          | 15          | 15          | 25          | 25          | 50          | 50          | 50          | 50          | 30          | 10          | 0   |
| 0- 5     | 5     | 23.5 | 23.2        | 19.9        | 17.7        | 16.3 | 15.5        | 13.8        | 13.0        | 11.7        | 9.1         | 7.9         | 5.6         | 3.7         | 2.3         | 1.3         | 1.1         | 0.3 |
| 5- 10    | 5     | 23.6 | 23.2        | 19.9        | 17.7        | 16.3 | 15.5        | 13.8        | 13.0        | 11.6        | 9.2         | 7.9         | 5.6         | 3.7         | 2.3         | 1.3         | 1.1         | 0.3 |
| 10- 20   | 10    | 23.9 | 23.7        | 20.1        | 17.9        | 16.4 | 15.6        | 13.9        | 13.0        | 11.6        | 9.2         | 7.9         | 5.6         | 3.9         | 2.3         | 1.3         | 1.1         | 0.3 |
| 20- 30   | 10    | 25.2 | 24.0        | 20.4        | 18.2        | 16.5 | 15.7        | 14.1        | 12.8        | 11.5        | 9.4         | 7.8         | 5.6         | 4.0         | 2.2         | 1.3         | 1.1         | 0.3 |
| 30- 45   | 15    | 26.7 | 25.3        | 21.0        | 18.2        | 16.7 | 15.9        | 14.2        | 12.7        | 11.3        | 9.6         | 7.6         | 5.6         | 4.1         | 2.2         | 1.2         | 1.1         | 0.3 |
| 45- 60   | 15    | 30.4 | 27.9        | 21.8        | 18.5        | 16.8 | 16.2        | 14.7        | 12.6        | 11.3        | 9.7         | 7.2         | 5.6         | 4.2         | 2.3         | 1.2         | 1.1         | 0.3 |
| 60- 75   | 15    | 33.2 | 29.2        | 23.0        | 19.1        | 17.3 | 16.6        | 15.0        | 12.9        | 11.4        | 9.4         | 7.2         | 5.4         | 4.2         | 2.3         | 1.2         | 1.1         | 0.3 |
| 75-95    | 20    | 31.7 | 29.4        | 24.2        | 20.5        | 18.6 | 17.9        | 15.4        | 13.3        | 11.1        | 9.3         | 7.2         | 5.1         | 4.1         | 2.3         | 1.2         | 1.1         | 0.3 |
| 95- 115  | 20    |      |             |             |             | 24.5 | 22.0        | 16.6        | 13.3        | 10.7        | 9.0         | 6.9         | 5.0         | 4.1         | 2.1         | 1.2         | 1.1         | 0.3 |
| 115- 125 | 10    |      |             |             |             | 25.4 | 22.9        | 16.4        | 12.7        | 10.3        | 8.4         | 6.7         | 5.0         | 3.9         | 2.1         | 1.1         | 1.1         | 0.3 |
| 125- 150 | 25    |      |             |             |             | 19.5 | 17.8        | 14.4        | 11.9        | 9.6         | 8.0         | 6.5         | 4.8         | 3.8         | 2.1         | 1.1         | 1.0         | 0.3 |
| 150- 175 | 25    |      |             |             |             | 15.0 | 13.6        | 11.8        | 10.1        | 8.5         | 7.3         | 5.8         | 4.5         | 3.6         | 2.0         | 1.1         | 0.9         | 0.3 |
| 175-200  | 25    |      |             |             |             | 11.9 | 10.7        | 10.0        | 9.0         | 7.7         | 6.6         | 5.5         | 4.2         | 3.3         | 1.8         | 1.1         | 0.9         | 0.3 |
| 200-225  | 25    |      |             |             |             | 9.9  | 8.9         | 8.4         | 7.5         | 6.5         | 5.6         | 4.7         | 3.8         | 3.1         | 1.7         | 0.9         | 0.8         | 0.3 |

Table A5.6 (continuation)

Equivalent dose rate in the ID access scenario for T= 2 y, t= 30 d- TRT C, LAr EndCap, VA, Pixel Tipe 2 services, Pixel Detector, and VI removed

| R/Z,     |       | 280  | 280-<br>290 | 290-<br>315 | 315-<br>340 | 340  | 340-<br>350 | 350-<br>365 | 365-<br>380 | 380-<br>405 | 405-<br>430 | 430-<br>480 | 480-<br>530 | 530-<br>580 | 580-<br>630 | 630-<br>660 | 660-<br>670 | 670 |
|----------|-------|------|-------------|-------------|-------------|------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----|
| cm       | dR∖dZ | 0    | 10          | 25          | 25          | 0    | 10          | 15          | 15          | 25          | 25          | 50          | 50          | 50          | 50          | 30          | 10          | 0   |
| 0- 5     | 5     | 19.4 | 19.0        | 16.6        | 14.8        | 13.4 | 12.6        | 11.7        | 10.7        | 9.5         | 7.7         | 6.4         | 4.7         | 3.2         | 1.8         | 1.1         | 1.1         | 0.3 |
| 5- 10    | 5     | 19.5 | 19.1        | 16.6        | 14.8        | 13.5 | 12.6        | 11.8        | 10.6        | 9.5         | 7.7         | 6.4         | 4.6         | 3.2         | 1.8         | 1.1         | 1.1         | 0.3 |
| 10-20    | 10    | 19.8 | 19.2        | 16.8        | 14.7        | 13.4 | 12.6        | 11.8        | 10.6        | 9.5         | 7.7         | 6.4         | 4.6         | 3.2         | 1.8         | 1.1         | 1.1         | 0.3 |
| 20- 30   | 10    | 20.7 | 20.0        | 17.1        | 14.8        | 13.4 | 12.8        | 11.8        | 10.5        | 9.4         | 7.8         | 6.3         | 4.6         | 3.4         | 1.8         | 1.1         | 1.1         | 0.3 |
| 30- 45   | 15    | 22.1 | 21.0        | 17.6        | 15.2        | 13.6 | 12.9        | 11.8        | 10.6        | 9.3         | 8.0         | 6.1         | 4.6         | 3.4         | 1.8         | 1.1         | 1.1         | 0.3 |
| 45- 60   | 15    | 25.2 | 22.9        | 18.2        | 15.4        | 14.0 | 13.4        | 12.0        | 10.6        | 9.3         | 7.9         | 6.0         | 4.6         | 3.4         | 1.9         | 1.1         | 1.0         | 0.3 |
| 60- 75   | 15    | 27.4 | 24.1        | 19.1        | 15.8        | 14.2 | 13.9        | 12.3        | 10.5        | 9.2         | 7.8         | 6.0         | 4.3         | 3.4         | 1.9         | 1.1         | 0.9         | 0.3 |
| 75-95    | 20    | 26.1 | 24.3        | 20.5        | 17.0        | 15.3 | 14.7        | 12.7        | 10.8        | 9.2         | 7.7         | 5.8         | 4.2         | 3.4         | 1.8         | 1.1         | 0.9         | 0.3 |
| 95- 115  | 20    |      |             |             |             | 20.1 | 18.0        | 13.7        | 10.8        | 8.7         | 7.5         | 5.6         | 4.0         | 3.1         | 1.6         | 1.1         | 0.7         | 0.3 |
| 115- 125 | 10    |      |             |             |             | 21.0 | 18.9        | 13.4        | 10.5        | 8.5         | 6.9         | 5.3         | 4.0         | 3.0         | 1.6         | 1.1         | 0.7         | 0.3 |
| 125- 150 | 25    |      |             |             |             | 16.1 | 14.4        | 11.8        | 9.8         | 7.9         | 6.4         | 5.1         | 3.8         | 3.0         | 1.7         | 1.1         | 0.7         | 0.3 |
| 150- 175 | 25    |      |             |             |             | 12.2 | 11.0        | 9.6         | 8.4         | 7.1         | 5.7         | 4.7         | 3.7         | 2.9         | 1.7         | 0.9         | 0.7         | 0.3 |
| 175-200  | 25    |      |             |             |             | 9.7  | 8.7         | 8.1         | 7.3         | 6.2         | 5.5         | 4.4         | 3.4         | 2.8         | 1.6         | 0.7         | 0.7         | 0.3 |
| 200-225  | 25    |      |             |             |             | 8.2  | 7.3         | 6.5         | 6.1         | 5.5         | 4.6         | 3.8         | 3.1         | 2.5         | 1.5         | 0.7         | 0.6         | 0.3 |

Table A5.6 (continuation)

| Equivalent dose rate in the ID access scenario for T= 2 y, t= 100 d– TRT C, LAr EndCap, VA, Pixel Tipe 2 services, Pixel |
|--------------------------------------------------------------------------------------------------------------------------|
| Detector, and VI removed                                                                                                 |

| R/Z,     |       | 280  | 280-<br>290 | 290-<br>315 | 315-<br>340 | 340  | 340-<br>350 | 350-<br>365 | 365-<br>380 | 380-<br>405 | 405-<br>430 | 430-<br>480 | 480-<br>530 | 530-<br>580 | 580-<br>630 | 630-<br>660 | 660-<br>670 | 670 |
|----------|-------|------|-------------|-------------|-------------|------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-----|
| cm       | dR∖dZ | 0    | 10          | 25          | 25          | 0    | 10          | 15          | 15          | 25          | 25          | 50          | 50          | 50          | 50          | 30          | 10          | 0   |
| 0- 5     | 5     | 13.1 | 12.6        | 11.0        | 9.8         | 8.9  | 8.3         | 7.8         | 7.2         | 6.1         | 5.1         | 4.3         | 3.0         | 2.2         | 1.1         | 0.6         | 0.5         | 0.1 |
| 5- 10    | 5     | 13.1 | 12.6        | 11.0        | 9.8         | 8.9  | 8.3         | 7.8         | 7.2         | 6.1         | 5.1         | 4.3         | 3.0         | 2.2         | 1.1         | 0.6         | 0.5         | 0.1 |
| 10-20    | 10    | 13.3 | 12.9        | 11.3        | 9.7         | 9.1  | 8.4         | 7.8         | 7.1         | 6.1         | 5.2         | 4.3         | 3.0         | 2.3         | 1.1         | 0.6         | 0.5         | 0.1 |
| 20- 30   | 10    | 14.1 | 13.6        | 11.4        | 9.9         | 9.2  | 8.4         | 7.8         | 7.2         | 6.2         | 5.2         | 4.2         | 3.0         | 2.3         | 1.1         | 0.6         | 0.5         | 0.1 |
| 30- 45   | 15    | 14.9 | 14.2        | 11.6        | 9.9         | 9.1  | 8.8         | 7.9         | 7.1         | 6.1         | 5.2         | 4.2         | 2.9         | 2.3         | 1.1         | 0.6         | 0.5         | 0.1 |
| 45- 60   | 15    | 16.5 | 15.1        | 12.1        | 10.1        | 9.1  | 8.9         | 8.1         | 7.1         | 5.9         | 5.2         | 4.2         | 2.8         | 2.2         | 1.1         | 0.5         | 0.5         | 0.1 |
| 60-75    | 15    | 17.9 | 16.0        | 12.7        | 10.7        | 9.4  | 9.2         | 8.2         | 7.2         | 6.1         | 5.2         | 4.0         | 2.8         | 2.3         | 1.1         | 0.5         | 0.5         | 0.1 |
| 75-95    | 20    | 17.3 | 16.0        | 13.6        | 11.3        | 10.4 | 9.8         | 8.6         | 7.4         | 6.0         | 5.1         | 4.0         | 2.8         | 2.3         | 1.1         | 0.5         | 0.5         | 0.1 |
| 95- 115  | 20    |      |             |             |             | 13.2 | 11.7        | 9.3         | 7.3         | 5.9         | 4.8         | 3.9         | 2.7         | 2.2         | 1.0         | 0.5         | 0.5         | 0.0 |
| 115- 125 | 10    |      |             |             |             | 13.7 | 12.4        | 8.8         | 7.0         | 5.7         | 4.5         | 3.7         | 2.6         | 2.1         | 1.0         | 0.5         | 0.5         | 0.0 |
| 125- 150 | 25    |      |             |             |             | 10.8 | 9.5         | 8.0         | 6.4         | 5.2         | 4.4         | 3.4         | 2.6         | 2.0         | 1.0         | 0.5         | 0.5         | 0.0 |
| 150- 175 | 25    |      |             |             |             | 8.2  | 7.6         | 6.5         | 5.5         | 4.6         | 3.9         | 3.3         | 2.5         | 1.8         | 1.0         | 0.5         | 0.5         | 0.0 |
| 175-200  | 25    |      |             |             |             | 6.4  | 5.8         | 5.4         | 4.9         | 4.2         | 3.7         | 3.0         | 2.3         | 1.8         | 0.8         | 0.5         | 0.5         | 0.0 |
| 200-225  | 25    |      |             |             |             | 5.4  | 4.9         | 4.5         | 4.2         | 3.8         | 3.1         | 2.7         | 2.1         | 1.6         | 0.8         | 0.5         | 0.4         | 0.0 |

Addendum 6



Fig. A6.1 Detector opening layout to calculations of access dose rate – EndCap removed on one side.

## Table A6.1

| R/Z,    |       | 0- 40 | 40- 80 | 80   | 80- 90 | 90- 100 | 100- 110 | 110- 120 | 120- 140 | 140- 160 | 160- 180 | 180- 200 | 200- 240 | 240- 280 | 280- 320 | 320- 360 |
|---------|-------|-------|--------|------|--------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| cm      | dR\dZ | 40    | 40     | 0    | 10     | 10      | 10       | 10       | 20       | 20       | 20       | 20       | 40       | 40       | 40       | 40       |
| 0- 5    | 5     |       |        | 20.8 | 20.7   | 19.9    | 19.1     | 18.7     | 18.8     | 18.5     | 17.7     | 16.4     | 16.9     | 14.9     | 13.1     | 11.3     |
| 5- 10   | 5     |       |        | 20.8 | 20.8   | 19.9    | 19.1     | 18.6     | 18.9     | 18.5     | 17.8     | 16.4     | 16.9     | 14.9     | 13.1     | 11.3     |
| 10- 20  | 10    |       |        | 21.1 | 20.7   | 19.9    | 19.2     | 18.6     | 19.0     | 18.5     | 18.0     | 16.7     | 16.8     | 15.0     | 13.2     | 11.3     |
| 20- 30  | 10    |       |        | 21.8 | 21.3   | 20.1    | 19.2     | 18.7     | 19.1     | 18.6     | 18.0     | 17.4     | 16.9     | 15.1     | 13.3     | 11.3     |
| 30- 40  | 10    |       |        | 22.2 | 21.7   | 20.4    | 19.5     | 19.1     | 19.1     | 18.4     | 18.1     | 17.6     | 17.1     | 15.3     | 13.5     | 11.4     |
| 40- 50  | 10    |       |        | 23.0 | 22.2   | 20.6    | 19.5     | 19.8     | 19.1     | 18.5     | 18.3     | 17.7     | 17.2     | 15.5     | 13.6     | 11.6     |
| 50- 65  | 15    |       |        | 24.0 | 23.0   | 20.8    | 19.7     | 19.8     | 19.2     | 18.6     | 18.3     | 17.9     | 17.3     | 15.9     | 13.9     | 11.7     |
| 65- 80  | 15    |       |        | 24.3 | 23.3   | 20.9    | 19.7     | 19.0     | 19.3     | 18.8     | 18.5     | 18.2     | 17.8     | 16.4     | 14.3     | 12.0     |
| 80- 95  | 15    |       |        | 23.9 | 22.8   | 20.7    | 19.8     | 19.3     | 19.6     | 19.3     | 19.0     | 18.9     | 18.5     | 18.0     | 15.4     | 12.5     |
| 95- 110 | 15    |       |        | 22.7 | 22.2   | 20.8    | 20.3     | 20.2     | 20.9     | 20.6     | 20.2     | 20.2     | 20.0     | 19.7     | 17.5     | 13.6     |

Equivalent dose rate in the ID access scenario for T= 100 d, t= 5 d -- EndCap removed on one side

## Table A6.1 (continuation)

| Ec | luivale | ent dos | e rate | in the l | D access | s scenari | o for T= | = 100 d, | t= 15 c | 1 E | EndCap | removed | d on on | e sid | e |
|----|---------|---------|--------|----------|----------|-----------|----------|----------|---------|-----|--------|---------|---------|-------|---|
|    |         |         |        |          |          |           |          |          |         |     |        |         |         |       |   |

|   | R/Z,    |       | 0- 40 | 40- 80 | 80   | 80-90 | 90- 100 | 100- 110 | 110- 120 | 120- 140 | 140- 160 | 160- 180 | 180- 200 | 200- 240 | 240- 280 | 280- 320 | 320- 360 |
|---|---------|-------|-------|--------|------|-------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|   | cm      | dR∖dZ | 40    | 40     | 0    | 10    | 10      | 10       | 10       | 20       | 20       | 20       | 20       | 40       | 40       | 40       | 40       |
| ( | 0-5     | 5     |       |        | 15.0 | 14.9  | 14.5    | 14.0     | 13.8     | 13.3     | 12.9     | 12.3     | 11.7     | 11.4     | 10.7     | 9.3      | 7.7      |
| ł | 5- 10   | 5     |       |        | 15.1 | 15.2  | 14.5    | 14.0     | 13.7     | 13.3     | 12.9     | 12.3     | 11.7     | 11.4     | 10.7     | 9.3      | 7.7      |
|   | 10- 20  | 10    |       |        | 15.4 | 15.3  | 14.5    | 14.1     | 13.7     | 13.4     | 13.0     | 12.3     | 11.8     | 11.5     | 10.6     | 9.3      | 7.8      |
| 1 | 20- 30  | 10    |       |        | 16.0 | 15.6  | 14.9    | 14.4     | 13.8     | 13.4     | 13.0     | 12.3     | 12.1     | 11.6     | 10.6     | 9.3      | 7.9      |
|   | 30- 40  | 10    |       |        | 16.3 | 15.9  | 15.0    | 14.3     | 13.8     | 13.4     | 12.9     | 12.5     | 12.1     | 11.7     | 10.8     | 9.4      | 7.9      |
| 4 | 40- 50  | 10    |       |        | 17.1 | 16.3  | 15.3    | 14.7     | 14.0     | 13.4     | 13.0     | 12.6     | 12.3     | 11.9     | 10.9     | 9.5      | 8.0      |
| ł | 50- 65  | 15    |       |        | 17.8 | 16.9  | 15.2    | 14.5     | 14.1     | 13.6     | 13.2     | 12.6     | 12.4     | 12.2     | 11.3     | 9.8      | 8.1      |
| ( | 65-80   | 15    |       |        | 17.9 | 17.0  | 15.5    | 14.6     | 14.1     | 13.8     | 13.4     | 13.0     | 12.8     | 12.6     | 11.8     | 10.2     | 8.5      |
| 1 | 80- 95  | 15    |       |        | 17.7 | 16.7  | 15.2    | 14.6     | 14.1     | 14.1     | 13.7     | 13.7     | 13.4     | 13.3     | 12.6     | 10.8     | 8.8      |
| 9 | 95- 110 | 15    |       |        | 16.8 | 16.4  | 15.5    | 15.0     | 15.0     | 14.7     | 14.8     | 14.7     | 14.8     | 14.8     | 14.1     | 12.4     | 9.7      |

| R/Z,    |       | 0- 40 | 40- 80 | 80   | 80- 90 | 90- 100 | 100- 110 | 110- 120 | 120- 140 | 140- 160 | 160- 180 | 180- 200 | 200- 240 | 240- 280 | 280- 320 | 320- 360 |
|---------|-------|-------|--------|------|--------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| cm      | dR\dZ | 40    | 40     | 0    | 10     | 10      | 10       | 10       | 20       | 20       | 20       | 20       | 40       | 40       | 40       | 40       |
| 0- 5    | 5     |       |        | 12.2 | 12.0   | 11.5    | 11.3     | 10.8     | 10.2     | 9.9      | 9.4      | 9.2      | 9.0      | 8.2      | 6.9      | 6.0      |
| 5- 10   | 5     |       |        | 12.3 | 12.1   | 11.8    | 11.3     | 10.8     | 10.2     | 9.9      | 9.5      | 9.2      | 9.1      | 8.2      | 6.9      | 6.0      |
| 10- 20  | 10    |       |        | 12.4 | 12.2   | 11.8    | 11.4     | 10.8     | 10.1     | 9.9      | 9.5      | 9.2      | 9.1      | 8.2      | 6.9      | 6.0      |
| 20- 30  | 10    |       |        | 12.8 | 12.6   | 11.9    | 11.4     | 10.9     | 10.2     | 10.0     | 9.5      | 9.3      | 9.1      | 8.3      | 7.0      | 6.0      |
| 30- 40  | 10    |       |        | 13.2 | 12.9   | 12.1    | 11.5     | 11.0     | 10.3     | 10.0     | 9.7      | 9.4      | 9.2      | 8.5      | 7.2      | 6.0      |
| 40- 50  | 10    |       |        | 13.8 | 13.2   | 12.3    | 11.5     | 11.1     | 10.5     | 10.1     | 9.8      | 9.4      | 9.3      | 8.5      | 7.2      | 6.1      |
| 50- 65  | 15    |       |        | 14.5 | 13.8   | 12.5    | 11.6     | 11.2     | 10.6     | 10.2     | 10.0     | 9.8      | 9.5      | 8.7      | 7.4      | 6.2      |
| 65- 80  | 15    |       |        | 14.5 | 13.7   | 12.4    | 11.6     | 11.3     | 10.8     | 10.5     | 10.2     | 10.1     | 9.8      | 9.0      | 7.8      | 6.3      |
| 80- 95  | 15    |       |        | 14.2 | 13.7   | 12.3    | 11.5     | 11.3     | 11.1     | 10.8     | 10.8     | 10.8     | 10.5     | 9.7      | 8.4      | 6.6      |
| 95- 110 | 15    |       |        | 13.7 | 13.1   | 12.6    | 12.3     | 12.1     | 11.7     | 11.6     | 11.7     | 11.8     | 11.8     | 11.1     | 9.8      | 7.4      |

Table A6.1 (continuation) Equivalent dose rate in the ID access scenario for T= 100 d, t= 30 d -- EndCap removed on one side

### Table A6.1 (continuation)

| Eq | luivale | nt dose | e rate i | n the ID | access | scenario | o for T= | 100 d, t= | : 100 d | EndCap | remove | d on one | e side |
|----|---------|---------|----------|----------|--------|----------|----------|-----------|---------|--------|--------|----------|--------|
|    |         |         |          |          |        |          |          |           |         |        |        |          |        |

| R/Z,    |       | 0- 40 | 40- 80 | 80  | 80-90 | 90- 100 | 100- 110 | 110- 120 | 120- 140 | 140- 160 | 160- 180 | 180- 200 | 200- 240 | 240- 280 | 280- 320 | 320- 360 |
|---------|-------|-------|--------|-----|-------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| cm      | dR\dZ | 40    | 40     | 0   | 10    | 10      | 10       | 10       | 20       | 20       | 20       | 20       | 40       | 40       | 40       | 40       |
| 0- 5    | 5     |       |        | 7.7 | 7.4   | 7.1     | 6.9      | 6.7      | 6.3      | 5.8      | 5.7      | 5.5      | 5.2      | 4.8      | 4.2      | 3.3      |
| 5- 10   | 5     |       |        | 7.7 | 7.6   | 7.1     | 7.0      | 6.8      | 6.3      | 5.8      | 5.7      | 5.5      | 5.2      | 4.8      | 4.2      | 3.3      |
| 10- 20  | 10    |       |        | 7.8 | 7.7   | 7.2     | 7.0      | 6.8      | 6.2      | 5.8      | 5.7      | 5.5      | 5.2      | 4.8      | 4.3      | 3.3      |
| 20- 30  | 10    |       |        | 8.0 | 7.9   | 7.5     | 7.3      | 6.9      | 6.3      | 5.9      | 5.7      | 5.5      | 5.3      | 4.8      | 4.3      | 3.3      |
| 30- 40  | 10    |       |        | 8.3 | 8.1   | 7.5     | 7.3      | 6.8      | 6.3      | 5.9      | 5.9      | 5.7      | 5.4      | 4.8      | 4.4      | 3.4      |
| 40- 50  | 10    |       |        | 8.8 | 8.4   | 7.7     | 7.3      | 6.9      | 6.4      | 6.0      | 6.1      | 5.8      | 5.6      | 4.9      | 4.4      | 3.5      |
| 50- 65  | 15    |       |        | 9.2 | 8.7   | 7.7     | 7.1      | 6.7      | 6.5      | 6.1      | 6.1      | 5.8      | 5.7      | 5.1      | 4.4      | 3.6      |
| 65- 80  | 15    |       |        | 9.3 | 8.9   | 7.7     | 7.3      | 6.8      | 6.3      | 6.3      | 6.1      | 6.0      | 5.8      | 5.3      | 4.5      | 3.7      |
| 80- 95  | 15    |       |        | 9.1 | 8.7   | 7.8     | 7.5      | 6.9      | 6.7      | 6.6      | 6.5      | 6.4      | 6.3      | 5.8      | 5.0      | 3.9      |
| 95- 110 | 15    |       |        | 8.5 | 8.4   | 7.9     | 7.3      | 7.4      | 7.2      | 7.1      | 7.1      | 7.1      | 6.9      | 6.5      | 5.8      | 4.3      |

| R/Z,    |       | 0- 40 | 40- 80 | 80   | 80- 90 | 90- 100 | 100- 110 | 110- 120 | 120- 140 | 140- 160 | 160- 180 | 180- 200 | 200- 240 | 240- 280 | 280- 320 | 320- 360 |
|---------|-------|-------|--------|------|--------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| cm      | dR\dZ | 40    | 40     | 0    | 10     | 10      | 10       | 10       | 20       | 20       | 20       | 20       | 40       | 40       | 40       | 40       |
| 0- 5    | 5     |       |        | 38.2 | 37.4   | 35.5    | 34.3     | 33.8     | 32.0     | 31.3     | 30.8     | 29.8     | 28.9     | 26.4     | 23.4     | 19.4     |
| 5- 10   | 5     |       |        | 38.3 | 37.8   | 36.0    | 35.0     | 34.2     | 32.1     | 31.2     | 30.9     | 29.5     | 28.9     | 26.5     | 23.4     | 19.5     |
| 10- 20  | 10    |       |        | 38.7 | 38.1   | 36.7    | 35.3     | 34.3     | 32.8     | 31.4     | 31.0     | 29.6     | 28.9     | 26.5     | 23.4     | 19.5     |
| 20- 30  | 10    |       |        | 39.7 | 39.0   | 36.9    | 35.5     | 34.3     | 33.0     | 32.0     | 31.4     | 30.1     | 28.9     | 26.6     | 23.6     | 19.6     |
| 30- 40  | 10    |       |        | 40.7 | 39.8   | 37.4    | 35.6     | 34.3     | 33.2     | 32.1     | 31.3     | 30.5     | 29.0     | 26.9     | 23.8     | 20.0     |
| 40- 50  | 10    |       |        | 42.5 | 41.1   | 37.6    | 35.8     | 34.5     | 33.1     | 32.1     | 31.4     | 31.0     | 29.5     | 27.6     | 24.0     | 20.2     |
| 50- 65  | 15    |       |        | 44.1 | 42.2   | 38.0    | 35.9     | 34.6     | 33.2     | 32.2     | 31.5     | 31.0     | 30.4     | 28.1     | 24.7     | 20.5     |
| 65- 80  | 15    |       |        | 44.2 | 42.3   | 37.9    | 35.7     | 34.5     | 33.5     | 32.4     | 32.1     | 31.8     | 31.2     | 29.5     | 25.9     | 21.3     |
| 80- 95  | 15    |       |        | 43.2 | 41.4   | 37.5    | 35.7     | 34.7     | 34.1     | 33.9     | 33.9     | 33.4     | 32.9     | 31.3     | 27.5     | 22.1     |
| 95- 110 | 15    |       |        | 41.4 | 40.3   | 38.2    | 37.2     | 37.0     | 36.5     | 36.3     | 36.3     | 36.5     | 36.3     | 35.0     | 31.5     | 24.3     |

Table A6.1 (continuation) Equivalent dose rate in the ID access scenario for T= 10 y, t= 5 d -- EndCap removed on one side

Table A6.1 (continuation)

| Ec | quival | ent dos | se rate | in the I | D acces | s scenar | io for T | = 10 | y, t= | 15 d | I E | EndCa | p r | removed | on on | e sic | le |
|----|--------|---------|---------|----------|---------|----------|----------|------|-------|------|-----|-------|-----|---------|-------|-------|----|
|    |        |         |         |          |         |          |          |      |       |      |     |       |     |         |       |       |    |

| R/Z,    |       | 0- 40 | 40- 80 | 80   | 80-90 | 90- 100 | 100- 110 | 110- 120 | 120- 140 | 140- 160 | 160- 180 | 180- 200 | 200- 240 | 240- 280 | 280- 320 | 320- 360 |
|---------|-------|-------|--------|------|-------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| cm      | dR\dZ | 40    | 40     | 0    | 10    | 10      | 10       | 10       | 20       | 20       | 20       | 20       | 40       | 40       | 40       | 40       |
| 0- 5    | 5     |       |        | 31.9 | 31.3  | 29.6    | 28.4     | 27.6     | 26.6     | 26.1     | 25.3     | 24.5     | 23.6     | 21.8     | 19.1     | 16.0     |
| 5- 10   | 5     |       |        | 32.1 | 31.7  | 29.7    | 28.4     | 27.6     | 26.6     | 26.1     | 25.3     | 24.6     | 23.6     | 21.8     | 19.1     | 16.0     |
| 10- 20  | 10    |       |        | 32.4 | 32.0  | 30.4    | 29.2     | 27.8     | 26.7     | 26.0     | 25.3     | 24.6     | 24.0     | 21.8     | 19.2     | 16.1     |
| 20- 30  | 10    |       |        | 33.2 | 32.6  | 30.9    | 29.7     | 28.4     | 27.0     | 25.9     | 25.4     | 24.6     | 24.2     | 21.8     | 19.5     | 16.3     |
| 30- 40  | 10    |       |        | 34.2 | 33.4  | 31.1    | 29.8     | 28.8     | 27.8     | 26.8     | 25.8     | 24.7     | 24.4     | 22.1     | 19.6     | 16.5     |
| 40- 50  | 10    |       |        | 35.7 | 34.6  | 31.5    | 29.9     | 29.0     | 27.8     | 27.0     | 26.4     | 25.0     | 24.5     | 22.7     | 19.8     | 16.8     |
| 50- 65  | 15    |       |        | 37.1 | 35.6  | 31.8    | 30.1     | 29.0     | 27.9     | 26.9     | 26.4     | 26.1     | 25.0     | 23.4     | 20.3     | 17.0     |
| 65- 80  | 15    |       |        | 37.1 | 35.4  | 31.8    | 29.9     | 28.9     | 28.2     | 27.4     | 26.6     | 26.5     | 26.2     | 24.5     | 21.3     | 17.5     |
| 80- 95  | 15    |       |        | 36.1 | 34.6  | 31.3    | 30.0     | 29.5     | 28.8     | 28.3     | 28.2     | 28.2     | 27.4     | 26.0     | 22.9     | 18.4     |
| 95- 110 | 15    |       |        | 35.2 | 34.2  | 32.5    | 31.5     | 31.3     | 30.9     | 30.5     | 30.3     | 30.7     | 30.5     | 29.3     | 26.3     | 19.9     |

| R/Z,    |       | 0- 40 | 40- 80 | 80   | 80- 90 | 90- 100 | 100- 110 | 110- 120 | 120- 140 | 140- 160 | 160- 180 | 180- 200 | 200- 240 | 240- 280 | 280- 320 | 320- 360 |
|---------|-------|-------|--------|------|--------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| cm      | dR\dZ | 40    | 40     | 0    | 10     | 10      | 10       | 10       | 20       | 20       | 20       | 20       | 40       | 40       | 40       | 40       |
| 0- 5    | 5     |       |        | 28.7 | 28.4   | 27.3    | 26.3     | 24.6     | 23.6     | 22.9     | 22.1     | 21.6     | 20.6     | 19.0     | 16.8     | 14.1     |
| 5- 10   | 5     |       |        | 28.7 | 28.5   | 27.3    | 26.3     | 25.0     | 23.6     | 22.8     | 22.1     | 21.6     | 20.6     | 19.0     | 16.8     | 14.0     |
| 10- 20  | 10    |       |        | 29.1 | 28.7   | 27.3    | 26.4     | 25.4     | 23.7     | 23.0     | 22.1     | 21.6     | 20.8     | 19.1     | 16.9     | 14.0     |
| 20- 30  | 10    |       |        | 29.7 | 29.3   | 27.6    | 26.4     | 25.6     | 24.2     | 22.9     | 22.1     | 21.8     | 21.3     | 19.2     | 17.0     | 14.2     |
| 30- 40  | 10    |       |        | 30.6 | 30.0   | 27.9    | 26.5     | 25.7     | 24.7     | 23.8     | 22.7     | 21.8     | 21.4     | 19.4     | 17.1     | 14.5     |
| 40- 50  | 10    |       |        | 32.0 | 30.8   | 28.3    | 26.7     | 25.5     | 24.7     | 24.0     | 23.3     | 22.2     | 21.6     | 19.8     | 17.3     | 14.6     |
| 50- 65  | 15    |       |        | 33.1 | 31.8   | 28.5    | 26.8     | 25.8     | 24.8     | 24.0     | 23.4     | 23.1     | 22.1     | 20.7     | 17.8     | 14.8     |
| 65- 80  | 15    |       |        | 33.2 | 31.5   | 28.3    | 26.8     | 25.7     | 24.9     | 24.1     | 23.7     | 23.6     | 23.1     | 21.6     | 18.7     | 15.1     |
| 80- 95  | 15    |       |        | 32.9 | 31.5   | 28.4    | 27.1     | 26.5     | 25.8     | 25.4     | 25.1     | 24.7     | 24.3     | 23.0     | 20.2     | 15.8     |
| 95- 110 | 15    |       |        | 31.6 | 30.7   | 29.0    | 28.2     | 27.8     | 27.5     | 27.1     | 27.1     | 27.3     | 27.2     | 25.8     | 23.4     | 17.5     |

Table A6.1 (continuation) Equivalent dose rate in the ID access scenario for T= 10 y, t= 30 d -- EndCap removed on one side

Table A6.1 (continuation)

| Equivalent dose rate in the ID access scenario for T= 10 y, t= 100 d EndCap remove | /ed on one side |
|------------------------------------------------------------------------------------|-----------------|
|------------------------------------------------------------------------------------|-----------------|

|   | R/Z,    |       | 0- 40 | 40- 80 | 80   | 80-90 | 90- 100 | 100- 110 | 110- 120 | 120- 140 | 140- 160 | 160- 180 | 180- 200 | 200- 240 | 240- 280 | 280- 320 | 320- 360 |
|---|---------|-------|-------|--------|------|-------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
|   | cm      | dR∖dZ | 40    | 40     | 0    | 10    | 10      | 10       | 10       | 20       | 20       | 20       | 20       | 40       | 40       | 40       | 40       |
| ( | D- 5    | 5     |       |        | 22.4 | 22.2  | 21.3    | 20.6     | 20.0     | 18.6     | 17.8     | 17.3     | 17.3     | 16.2     | 14.9     | 13.0     | 10.8     |
| 4 | 5- 10   | 5     |       |        | 22.6 | 22.2  | 21.3    | 20.6     | 20.0     | 18.6     | 17.8     | 17.3     | 17.2     | 16.1     | 14.9     | 13.0     | 10.8     |
|   | 10- 20  | 10    |       |        | 22.9 | 22.6  | 21.7    | 20.8     | 20.1     | 18.9     | 17.7     | 17.2     | 16.9     | 16.3     | 15.1     | 13.0     | 11.0     |
| 1 | 20- 30  | 10    |       |        | 23.6 | 23.0  | 21.8    | 20.9     | 20.4     | 19.4     | 18.3     | 17.4     | 16.9     | 16.5     | 15.1     | 13.1     | 11.0     |
|   | 30- 40  | 10    |       |        | 24.1 | 23.6  | 22.0    | 21.0     | 20.4     | 19.4     | 18.7     | 18.0     | 17.0     | 16.5     | 15.3     | 13.4     | 11.1     |
| 4 | 40- 50  | 10    |       |        | 25.2 | 24.3  | 22.4    | 21.0     | 20.2     | 19.5     | 18.6     | 18.2     | 17.6     | 16.7     | 15.5     | 13.5     | 11.2     |
| ! | 50- 65  | 15    |       |        | 26.2 | 25.1  | 22.3    | 21.2     | 20.4     | 19.4     | 18.8     | 18.2     | 18.0     | 17.5     | 16.0     | 14.1     | 11.5     |
| ( | 65-80   | 15    |       |        | 26.2 | 24.9  | 22.4    | 20.9     | 20.1     | 19.4     | 18.9     | 18.6     | 18.5     | 18.3     | 16.8     | 14.7     | 11.7     |
| ł | 80- 95  | 15    |       |        | 26.4 | 25.3  | 22.8    | 21.6     | 21.1     | 20.5     | 20.0     | 19.9     | 19.7     | 19.1     | 18.0     | 16.0     | 12.4     |
| 9 | 95- 110 | 15    |       |        | 25.1 | 24.5  | 23.0    | 22.3     | 21.9     | 21.6     | 21.4     | 21.2     | 21.6     | 21.7     | 20.3     | 18.3     | 13.5     |



Fig. A6.2 Detector opening layout to calculations of access dose rate - Inner Detector removed

Table A6.2

| R/Z,    |       | 0- 40 | 40- 80 | 80   | 80- 90 | 90- 100 | 100- 110 | 110- 120 | 120- 140 | 140- 160 | 160- 180 | 180- 200 | 200- 240 | 240- 280 | 280- 320 | 320- 360 |
|---------|-------|-------|--------|------|--------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| cm      | dR\dZ | 40    | 40     | 0    | 10     | 10      | 10       | 10       | 20       | 20       | 20       | 20       | 40       | 40       | 40       | 40       |
| 0- 5    | 5     | 10.7  | 10.7   | 10.7 | 10.7   | 10.7    | 10.7     | 10.7     | 11.5     | 11.7     | 11.4     | 10.7     | 11.4     | 10.4     | 9.1      | 8        |
| 5- 10   | 5     | 10.7  | 10.7   | 10.7 | 10.7   | 10.7    | 10.7     | 10.7     | 11.5     | 11.7     | 11.5     | 10.7     | 11.4     | 10.4     | 9.1      | 8        |
| 10- 20  | 10    | 10.7  | 10.7   | 10.7 | 10.7   | 10.7    | 10.7     | 10.7     | 11.6     | 11.7     | 11.7     | 11       | 11.5     | 10.4     | 9.1      | 8        |
| 20- 30  | 10    | 10.7  | 10.7   | 10.7 | 10.7   | 10.7    | 10.7     | 10.7     | 11.7     | 11.7     | 11.7     | 11.5     | 11.6     | 10.4     | 9.1      | 8        |
| 30- 40  | 10    | 10.7  | 10.7   | 10.7 | 10.7   | 10.7    | 10.7     | 11       | 11.7     | 11.7     | 11.7     | 11.7     | 11.7     | 10.5     | 9.2      | 8        |
| 40- 50  | 10    | 10.7  | 10.7   | 10.7 | 10.7   | 10.7    | 10.8     | 11.6     | 11.7     | 11.7     | 11.7     | 11.7     | 11.6     | 10.6     | 9.2      | 8.1      |
| 50- 65  | 15    | 10.7  | 10.7   | 10.7 | 10.7   | 10.7    | 10.8     | 11.5     | 11.7     | 11.7     | 11.7     | 11.7     | 11.5     | 10.7     | 9.3      | 8.1      |
| 65- 80  | 15    | 10.7  | 10.7   | 10.7 | 10.7   | 10.7    | 10.7     | 10.8     | 11.7     | 11.7     | 11.7     | 11.7     | 11.7     | 10.8     | 9.4      | 8.2      |
| 80- 95  | 15    | 10.7  | 10.7   | 10.7 | 10.7   | 10.7    | 10.7     | 10.7     | 11.6     | 11.7     | 11.7     | 11.7     | 11.7     | 11.6     | 9.6      | 8.2      |
| 95- 110 | 15    | 10.6  | 10.6   | 10.6 | 10.7   | 10.7    | 10.7     | 10.8     | 11.7     | 11.7     | 11.7     | 11.7     | 11.7     | 11.8     | 10       | 8.4      |

Equivalent dose rate in the ID access scenario for T= 100 d, t= 5 d -- Inner Detector removed

# Table A6.2 (continuation)

| Equivalent dose rate in the | e ID access scenario for | T= 100 d, t= 15 d | I Inner Detector removed |
|-----------------------------|--------------------------|-------------------|--------------------------|
|                             |                          |                   |                          |

| R/Z,    |       | 0- 40 | 40- 80 | 80  | 80- 90 | 90- 100 | 100- 110 | 110- 120 | 120- 140 | 140- 160 | 160- 180 | 180- 200 | 200- 240 | 240- 280 | 280- 320 | 320- 360 |
|---------|-------|-------|--------|-----|--------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| cm      | dR\dZ | 40    | 40     | 0   | 10     | 10      | 10       | 10       | 20       | 20       | 20       | 20       | 40       | 40       | 40       | 40       |
| 0- 5    | 5     | 7.6   | 7.6    | 7.6 | 7.6    | 7.8     | 7.8      | 7.8      | 7.8      | 7.8      | 7.9      | 7.7      | 7.7      | 7.1      | 6.2      | 5.2      |
| 5- 10   | 5     | 7.6   | 7.6    | 7.6 | 7.7    | 7.8     | 7.8      | 7.8      | 7.8      | 7.8      | 7.9      | 7.7      | 7.7      | 7.1      | 6.2      | 5.2      |
| 10- 20  | 10    | 7.7   | 7.7    | 7.7 | 7.7    | 7.8     | 7.8      | 7.8      | 7.9      | 7.9      | 7.9      | 7.7      | 7.7      | 7.1      | 6.2      | 5.3      |
| 20- 30  | 10    | 7.7   | 7.7    | 7.7 | 7.7    | 7.8     | 7.8      | 7.8      | 7.9      | 7.9      | 7.8      | 7.8      | 7.8      | 7.1      | 6.2      | 5.3      |
| 30- 40  | 10    | 7.7   | 7.7    | 7.7 | 7.7    | 7.8     | 7.8      | 7.8      | 7.9      | 7.9      | 7.9      | 7.8      | 7.8      | 7.2      | 6.2      | 5.3      |
| 40- 50  | 10    | 7.7   | 7.7    | 7.7 | 7.7    | 7.9     | 7.9      | 7.9      | 7.9      | 7.9      | 8        | 7.9      | 7.8      | 7.3      | 6.2      | 5.3      |
| 50- 65  | 15    | 7.7   | 7.7    | 7.7 | 7.7    | 7.8     | 7.9      | 7.9      | 8        | 8        | 8        | 8        | 8        | 7.4      | 6.3      | 5.4      |
| 65- 80  | 15    | 7.7   | 7.7    | 7.7 | 7.7    | 7.8     | 7.9      | 7.9      | 8        | 8.1      | 8.1      | 8.1      | 8.1      | 7.6      | 6.4      | 5.5      |
| 80- 95  | 15    | 7.8   | 7.8    | 7.8 | 7.8    | 7.8     | 7.9      | 7.9      | 8.1      | 8.2      | 8.3      | 8.3      | 8.2      | 7.8      | 6.5      | 5.5      |
| 95- 110 | 15    | 7.8   | 7.8    | 7.8 | 7.8    | 7.9     | 7.9      | 8        | 8.1      | 8.3      | 8.4      | 8.5      | 8.5      | 8        | 6.8      | 5.6      |

| R/Z,    |       | 0- 40 | 40- 80 | 80  | 80- 90 | 90- 100 | 100- 110 | 110- 120 | 120- 140 | 140- 160 | 160- 180 | 180- 200 | 200- 240 | 240- 280 | 280- 320 | 320- 360 |
|---------|-------|-------|--------|-----|--------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| cm      | dR∖dZ | 40    | 40     | 0   | 10     | 10      | 10       | 10       | 20       | 20       | 20       | 20       | 40       | 40       | 40       | 40       |
| 0- 5    | 5     | 6     | 6      | 6   | 5.9    | 5.9     | 6        | 6        | 6        | 6        | 5.9      | 5.9      | 5.8      | 5.3      | 4.5      | 3.9      |
| 5- 10   | 5     | 6     | 6      | 6   | 6      | 6       | 6        | 6        | 6        | 6        | 6        | 5.9      | 5.9      | 5.3      | 4.5      | 3.9      |
| 10- 20  | 10    | 6     | 6      | 6   | 6      | 6       | 6        | 6        | 6        | 6        | 6        | 5.9      | 5.9      | 5.3      | 4.5      | 3.9      |
| 20- 30  | 10    | 6     | 6      | 6   | 6      | 6       | 6        | 6        | 6.1      | 6.1      | 6        | 5.9      | 5.8      | 5.3      | 4.5      | 3.9      |
| 30- 40  | 10    | 6     | 6      | 6   | 6      | 6       | 6        | 6        | 6.1      | 6.1      | 6.1      | 6        | 5.9      | 5.4      | 4.6      | 3.9      |
| 40- 50  | 10    | 6.1   | 6.1    | 6.1 | 6.1    | 6.1     | 6        | 6        | 6.1      | 6.2      | 6.2      | 6        | 5.9      | 5.5      | 4.6      | 3.9      |
| 50- 65  | 15    | 6.1   | 6.1    | 6.1 | 6.1    | 6.1     | 6.1      | 6.1      | 6.1      | 6.2      | 6.2      | 6.2      | 6        | 5.6      | 4.7      | 4        |
| 65- 80  | 15    | 6.1   | 6.1    | 6.1 | 6.1    | 6.1     | 6.1      | 6.2      | 6.2      | 6.2      | 6.3      | 6.3      | 6.2      | 5.7      | 4.8      | 4        |
| 80- 95  | 15    | 6.2   | 6.2    | 6.2 | 6.2    | 6.2     | 6.2      | 6.2      | 6.3      | 6.3      | 6.5      | 6.5      | 6.4      | 5.9      | 4.9      | 4        |
| 95- 110 | 15    | 6.2   | 6.2    | 6.2 | 6.2    | 6.3     | 6.3      | 6.4      | 6.4      | 6.5      | 6.6      | 6.7      | 6.7      | 6.2      | 5.1      | 4.1      |

Table A6.2 (continuation) Equivalent dose rate in the ID access scenario for T= 100 d, t= 30 d -- Inner Detector removed

## Table A6.2 (continuation)

| Equivalent dose rate in t | he ID access sce | nario for T= 100 d, | t= 100 d In | ner Detector removed |
|---------------------------|------------------|---------------------|-------------|----------------------|
|                           |                  |                     |             |                      |

| R/Z,    |       | 0- 40 | 40- 80 | 80  | 80- 90 | 90- 100 | 100- 110 | 110- 120 | 120- 140 | 140- 160 | 160- 180 | 180- 200 | 200- 240 | 240- 280 | 280- 320 | 320- 360 |
|---------|-------|-------|--------|-----|--------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| cm      | dR\dZ | 40    | 40     | 0   | 10     | 10      | 10       | 10       | 20       | 20       | 20       | 20       | 40       | 40       | 40       | 40       |
| 0- 5    | 5     | 3.7   | 3.6    | 3.7 | 3.6    | 3.6     | 3.7      | 3.6      | 3.7      | 3.6      | 3.6      | 3.6      | 3.4      | 3.2      | 2.7      | 2.3      |
| 5- 10   | 5     | 3.7   | 3.7    | 3.7 | 3.7    | 3.6     | 3.7      | 3.7      | 3.7      | 3.6      | 3.6      | 3.6      | 3.4      | 3.2      | 2.7      | 2.3      |
| 10- 20  | 10    | 3.7   | 3.7    | 3.7 | 3.7    | 3.7     | 3.7      | 3.7      | 3.7      | 3.6      | 3.6      | 3.6      | 3.4      | 3.2      | 2.8      | 2.3      |
| 20- 30  | 10    | 3.7   | 3.7    | 3.7 | 3.7    | 3.7     | 3.8      | 3.7      | 3.7      | 3.7      | 3.6      | 3.6      | 3.5      | 3.2      | 2.8      | 2.3      |
| 30- 40  | 10    | 3.7   | 3.7    | 3.7 | 3.7    | 3.7     | 3.8      | 3.8      | 3.7      | 3.7      | 3.7      | 3.6      | 3.5      | 3.2      | 2.8      | 2.3      |
| 40- 50  | 10    | 3.7   | 3.7    | 3.7 | 3.7    | 3.7     | 3.8      | 3.8      | 3.8      | 3.8      | 3.8      | 3.7      | 3.6      | 3.2      | 2.8      | 2.4      |
| 50- 65  | 15    | 3.7   | 3.7    | 3.7 | 3.7    | 3.7     | 3.7      | 3.8      | 3.8      | 3.8      | 3.8      | 3.8      | 3.7      | 3.3      | 2.8      | 2.4      |
| 65- 80  | 15    | 3.8   | 3.8    | 3.8 | 3.8    | 3.8     | 3.8      | 3.8      | 3.8      | 3.9      | 3.9      | 3.9      | 3.8      | 3.4      | 2.9      | 2.4      |
| 80- 95  | 15    | 3.8   | 3.9    | 3.8 | 3.9    | 3.9     | 3.9      | 3.9      | 3.9      | 3.9      | 4        | 4        | 3.9      | 3.6      | 3.1      | 2.4      |
| 95- 110 | 15    | 3.9   | 3.9    | 3.9 | 3.9    | 4       | 4        | 4        | 4        | 4        | 4.2      | 4.2      | 4.2      | 3.8      | 3.3      | 2.5      |

|         |       |       |          |        |           |                 |          |           |                  |                    |                  |          | Tabl     | e A6.2 (d | continua | tion)    |
|---------|-------|-------|----------|--------|-----------|-----------------|----------|-----------|------------------|--------------------|------------------|----------|----------|-----------|----------|----------|
|         |       | Εqι   | uivalent | dose i | ate in tl | <u>ne ID ac</u> | cess sce | enario fo | <u>r T= 10 y</u> | <u>′, t= 5 d -</u> | <u>- Inner D</u> | etector  | removed  | <u> </u>  |          |          |
| R/Z,    |       | 0- 40 | 40- 80   | 80     | 80- 90    | 90- 100         | 100- 110 | 110- 120  | 120- 140         | 140- 160           | 160- 180         | 180- 200 | 200- 240 | 240- 280  | 280- 320 | 320- 360 |
| cm      | dR∖dZ | 40    | 40       | 0      | 10        | 10              | 10       | 10        | 20               | 20                 | 20               | 20       | 40       | 40        | 40       | 40       |
| 0- 5    | 5     | 20.4  | 20.4     | 20.4   | 20        | 19.5            | 19.5     | 20.2      | 19.7             | 20                 | 20.3             | 20.1     | 20       | 18.4      | 16.2     | 13.8     |
| 5- 10   | 5     | 20.4  | 20.4     | 20.4   | 20.3      | 19.9            | 20.2     | 20.5      | 19.8             | 19.9               | 20.4             | 19.8     | 20       | 18.4      | 16.2     | 13.9     |
| 10- 20  | 10    | 20.4  | 20.4     | 20.4   | 20.4      | 20.5            | 20.5     | 20.5      | 20.4             | 20.1               | 20.5             | 19.8     | 20       | 18.4      | 16.2     | 13.9     |
| 20- 30  | 10    | 20.4  | 20.4     | 20.4   | 20.4      | 20.5            | 20.5     | 20.5      | 20.6             | 20.7               | 20.8             | 20.2     | 19.9     | 18.5      | 16.4     | 14       |
| 30- 40  | 10    | 20.4  | 20.4     | 20.4   | 20.4      | 20.5            | 20.5     | 20.5      | 20.6             | 20.7               | 20.7             | 20.6     | 19.9     | 18.7      | 16.4     | 14.2     |
| 40- 50  | 10    | 20.4  | 20.4     | 20.4   | 20.4      | 20.4            | 20.5     | 20.6      | 20.6             | 20.6               | 20.7             | 20.8     | 20.3     | 19.2      | 16.5     | 14.3     |
| 50- 65  | 15    | 20.4  | 20.4     | 20.4   | 20.4      | 20.4            | 20.5     | 20.5      | 20.6             | 20.6               | 20.6             | 20.7     | 20.6     | 19.4      | 16.8     | 14.5     |
| 65- 80  | 15    | 20.4  | 20.4     | 20.4   | 20.4      | 20.4            | 20.4     | 20.5      | 20.5             | 20.5               | 20.6             | 21       | 20.9     | 20        | 17.3     | 14.7     |
| 80- 95  | 15    | 20.3  | 20.3     | 20.3   | 20.3      | 20.4            | 20.4     | 20.4      | 20.7             | 21.2               | 21.6             | 21.7     | 21.4     | 20.6      | 17.9     | 14.9     |
| 95- 110 | 15    | 20.3  | 20.3     | 20.3   | 20.3      | 20.7            | 21.1     | 21.4      | 21.4             | 21.5               | 21.9             | 22.4     | 22.4     | 21.5      | 19       | 15.5     |

### Table A6.2 (continuation) . \_\_\_\_\_

|  | Equi | valent dose | e rate in t | he ID ac | cess sce | enario for | T= 10 y | , t= | 15 d | Inner | Detector | remove |
|--|------|-------------|-------------|----------|----------|------------|---------|------|------|-------|----------|--------|
|--|------|-------------|-------------|----------|----------|------------|---------|------|------|-------|----------|--------|

| R/Z,    |       | 0- 40 | 40- 80 | 80   | 80- 90 | 90- 100 | 100- 110 | 110- 120 | 120- 140 | 140- 160 | 160- 180 | 180- 200 | 200- 240 | 240- 280 | 280- 320 | 320- 360 |
|---------|-------|-------|--------|------|--------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| cm      | dR\dZ | 40    | 40     | 0    | 10     | 10      | 10       | 10       | 20       | 20       | 20       | 20       | 40       | 40       | 40       | 40       |
| 0- 5    | 5     | 17.1  | 17.1   | 17.1 | 16.7   | 16.1    | 16.2     | 16.2     | 16.2     | 16.5     | 16.6     | 16.4     | 15.9     | 15.0     | 13.3     | 11.2     |
| 5- 10   | 5     | 17.1  | 17.1   | 17.1 | 17.0   | 16.2    | 16.2     | 16.2     | 16.2     | 16.5     | 16.6     | 16.4     | 15.9     | 15.0     | 13.3     | 11.2     |
| 10- 20  | 10    | 17.1  | 17.1   | 17.1 | 17.1   | 16.9    | 16.8     | 16.3     | 16.3     | 16.4     | 16.5     | 16.4     | 16.3     | 15.0     | 13.4     | 11.2     |
| 20- 30  | 10    | 17.1  | 17.1   | 17.1 | 17.1   | 17.1    | 17.2     | 16.9     | 16.5     | 16.4     | 16.5     | 16.5     | 16.6     | 15.0     | 13.4     | 11.3     |
| 30- 40  | 10    | 17.1  | 17.1   | 17.1 | 17.1   | 17.1    | 17.2     | 17.2     | 17.3     | 17.1     | 16.9     | 16.5     | 16.6     | 15.1     | 13.5     | 11.4     |
| 40- 50  | 10    | 17.1  | 17.1   | 17.1 | 17.1   | 17.1    | 17.2     | 17.2     | 17.3     | 17.3     | 17.4     | 16.7     | 16.6     | 15.4     | 13.5     | 11.6     |
| 50- 65  | 15    | 17.1  | 17.1   | 17.1 | 17.1   | 17.1    | 17.2     | 17.2     | 17.2     | 17.3     | 17.3     | 17.3     | 16.9     | 15.9     | 13.7     | 11.6     |
| 65- 80  | 15    | 17.0  | 17.0   | 17.0 | 17.1   | 17.1    | 17.1     | 17.1     | 17.2     | 17.2     | 17.3     | 17.4     | 17.4     | 16.3     | 14.1     | 11.9     |
| 80- 95  | 15    | 17.0  | 17.0   | 17.0 | 17.0   | 17.0    | 17.2     | 17.4     | 17.4     | 17.7     | 18.0     | 18.1     | 17.8     | 16.9     | 14.7     | 12.1     |
| 95- 110 | 15    | 17.7  | 17.7   | 17.7 | 17.7   | 18.0    | 18.0     | 18.0     | 18.1     | 18.1     | 18.3     | 18.8     | 18.7     | 17.8     | 15.7     | 12.5     |

Table A6.2 (continuation)

| R/Z,    |       | 0- 40 | 40- 80 | 80   | 80- 90 | 90- 100 | 100- 110 | 110- 120 | 120- 140 | 140- 160 | 160- 180 | 180- 200 | 200- 240 | 240- 280 | 280- 320 | 320- 360 |
|---------|-------|-------|--------|------|--------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| cm      | dR\dZ | 40    | 40     | 0    | 10     | 10      | 10       | 10       | 20       | 20       | 20       | 20       | 40       | 40       | 40       | 40       |
| 0- 5    | 5     | 15.1  | 15.1   | 15.1 | 15.1   | 15.1    | 15.1     | 14.2     | 14.2     | 14.5     | 14.5     | 14.4     | 13.9     | 13.0     | 11.5     | 9.8      |
| 5- 10   | 5     | 15.1  | 15.1   | 15.1 | 15.1   | 15.1    | 15.1     | 14.6     | 14.2     | 14.4     | 14.5     | 14.4     | 13.9     | 13.0     | 11.5     | 9.7      |
| 10- 20  | 10    | 15.1  | 15.1   | 15.1 | 15.1   | 15.1    | 15.1     | 15.1     | 14.3     | 14.4     | 14.5     | 14.4     | 14.1     | 13.0     | 11.5     | 9.7      |
| 20- 30  | 10    | 15.1  | 15.1   | 15.1 | 15.1   | 15.1    | 15.1     | 15.2     | 14.8     | 14.4     | 14.4     | 14.5     | 14.5     | 13.0     | 11.6     | 9.9      |
| 30- 40  | 10    | 15.1  | 15.1   | 15.1 | 15.1   | 15.1    | 15.1     | 15.2     | 15.3     | 15.3     | 14.9     | 14.5     | 14.6     | 13.2     | 11.6     | 10.0     |
| 40- 50  | 10    | 15.0  | 15.0   | 15.0 | 15.0   | 15.1    | 15.1     | 15.2     | 15.2     | 15.3     | 15.3     | 14.6     | 14.6     | 13.4     | 11.7     | 10.0     |
| 50- 65  | 15    | 15.0  | 15.0   | 15.0 | 15.0   | 15.1    | 15.1     | 15.2     | 15.2     | 15.2     | 15.3     | 15.3     | 14.8     | 14.0     | 11.9     | 10.1     |
| 65- 80  | 15    | 15.0  | 15.0   | 15.0 | 15.0   | 15.0    | 15.1     | 15.1     | 15.1     | 15.2     | 15.2     | 15.4     | 15.4     | 14.3     | 12.4     | 10.3     |
| 80- 95  | 15    | 15.5  | 15.5   | 15.5 | 15.5   | 15.5    | 15.6     | 15.7     | 15.8     | 15.8     | 15.9     | 16.0     | 15.8     | 14.9     | 12.9     | 10.5     |
| 95- 110 | 15    | 15.9  | 15.9   | 15.9 | 15.9   | 15.9    | 16.0     | 16.0     | 16.0     | 16.1     | 16.4     | 16.8     | 16.7     | 15.7     | 14.0     | 11.0     |

Equivalent dose rate in the ID access scenario for T= 10 y, t= 30 d -- Inner Detector removed

Table A6.2 (continuation)

| Equiv | /alent of | dose ra | ate in th | e ID aco | cess scer | hario for | T= 10 y | , t= 100 | d | Inner | Detector | remove | d |
|-------|-----------|---------|-----------|----------|-----------|-----------|---------|----------|---|-------|----------|--------|---|
|       |           |         |           |          |           |           |         |          |   |       |          |        |   |

| R/Z,    |       | 0- 40 | 40- 80 | 80   | 80-90 | 90- 100 | 100- 110 | 110- 120 | 120- 140 | 140- 160 | 160- 180 | 180- 200 | 200- 240 | 240- 280 | 280- 320 | 320- 360 |
|---------|-------|-------|--------|------|-------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| cm      | dR\dZ | 40    | 40     | 0    | 10    | 10      | 10       | 10       | 20       | 20       | 20       | 20       | 40       | 40       | 40       | 40       |
| 0- 5    | 5     | 12.0  | 12.0   | 12.0 | 12.0  | 12.0    | 12.0     | 12.0     | 11.5     | 11.3     | 11.4     | 11.7     | 11.1     | 10.4     | 9.2      | 7.7      |
| 5- 10   | 5     | 12.0  | 12.0   | 12.0 | 12.0  | 12.0    | 12.0     | 12.0     | 11.5     | 11.3     | 11.4     | 11.6     | 11.1     | 10.4     | 9.2      | 7.7      |
| 10- 20  | 10    | 12.0  | 12.0   | 12.0 | 12.0  | 12.0    | 12.0     | 12.0     | 11.7     | 11.2     | 11.3     | 11.2     | 11.3     | 10.5     | 9.2      | 7.9      |
| 20- 30  | 10    | 12.0  | 12.0   | 12.0 | 12.0  | 12.0    | 12.0     | 12.0     | 12.1     | 11.8     | 11.5     | 11.3     | 11.4     | 10.5     | 9.2      | 7.9      |
| 30- 40  | 10    | 11.9  | 11.9   | 11.9 | 11.9  | 12.0    | 12.0     | 12.1     | 12.1     | 12.2     | 12.0     | 11.3     | 11.4     | 10.6     | 9.3      | 8.0      |
| 40- 50  | 10    | 11.9  | 11.9   | 11.9 | 11.9  | 12.0    | 12.0     | 12.1     | 12.1     | 12.1     | 12.2     | 11.8     | 11.4     | 10.8     | 9.4      | 8.0      |
| 50- 65  | 15    | 11.9  | 11.9   | 11.9 | 11.9  | 11.9    | 12.0     | 12.0     | 12.1     | 12.1     | 12.1     | 12.2     | 11.9     | 11.0     | 9.7      | 8.2      |
| 65- 80  | 15    | 11.9  | 11.9   | 11.9 | 11.9  | 11.9    | 11.9     | 12.0     | 12.0     | 12.0     | 12.1     | 12.2     | 12.3     | 11.4     | 10.0     | 8.3      |
| 80- 95  | 15    | 12.7  | 12.7   | 12.7 | 12.7  | 12.7    | 12.7     | 12.7     | 12.8     | 12.8     | 12.9     | 12.9     | 12.6     | 11.9     | 10.6     | 8.6      |
| 95- 110 | 15    | 12.8  | 12.8   | 12.8 | 12.8  | 12.8    | 12.8     | 12.9     | 12.9     | 13.0     | 13.1     | 13.5     | 13.6     | 12.8     | 11.5     | 8.9      |