Progress report

ACTIVATION STUDY OF ATLAS DETECTOR

 

Here is presented some result of the first phase of ATLAS activation study which is under way in the Moscow Engineering Physics Institute (MEPhI).

The aim of the first phase is to collect data necessary for a comprehensive estimation of both activation and gamma dose rate due to operation of LHC after shout down. Both activation induced by low energy neutrons and high energy hadrons is taken into consideration.

As a result of implementation of the first phase, the major factors relevant to activation of ATLAS will be determined for a further detail research, namely: distribution of specific induced activity for commonly used materials (steel, cooper, aluminum, and so on); areas (systems/subsystems of the detector) where the materials will be highly radioactive, radioactive, and slightly radioactive; list of systems/materials most sensitive for activation and, hence, required for some kind of "optimization" or limited use of those materials; data sets and codes necessary for further calculation of gamma-dose rate in various scenarios of maintenance.

 

Input data and assumptions

 

In order to calculate specific induced activity one should know:

 

·      flux of incident particles;

·      concentration of target nuclei;

·      cross-section of nuclear reactions producing radioactive nuclei;

·      operation scenario: time of operation (hereafter T) and time of cooling (t).

 

Status of input data

1) Fluxes

Ok

2) Concentration of target nuclei;

for high energy activationalmost Ok – bulky items, such as shielding, are represented rather well in geometry files;

for thermal neutron activation - incomplete- concentration of impurities taken conservative

3) Cross-section of nuclear reactions producing radioactive nuclei

for thermal neutrons - Ok

for high energy hadrons - incomplete- proton cross-sections are used

4) Operation scenario

General assumptions are made; more details on maintenance procedure and operation history are needed for further study of doses

 

1)   Fluxes in the region 0<R<12 m, 0<Z<24 m were produced by Mike Shupe together with a readback procedure. The following data available:

·      Fluxes on 10cm x 10cm grid

            1      High energy neutrons above 20 MeV;

            2      Fast neutrons - 2.19 MeV to 20 MeV;

            3      Intermediate neutrons - 3.78 keV to 2.19 MeV;

            4      Moderated neutrons - 0.414 eV to 3.78 keV;

            5      Thermal neutrons - 10E-5 to 0.414 eV;

            6      Protons above 20 MeV;

            7      Pi minus above 20 MeV;

            8      Pi plus above 20 MeV;

            9      Stars, threshold 50 MeV.

 

·      Neutron spectra on 100cm x 100cm grid, 61 energy group.

·      Charged hadron spectra on 50cm x 50cm grid, 21 energy group:

            1     protons,

            2     p- pions,

            3     p+ pions.

 


As an example, fig 1-2 shows flux against R, at Z=0.

 

Fig. 1. Flux of thermal, moderated and fast neutrons against R, at Z=0  (thermal 1.10-5 eV - 0.14 eV; moderated 0.14 eV- 3.78 keV; fast 2.19 MeV- 20 MeV).

 

 

Fig. 2. Flux of hadrons with energy above 20 MeV against R, at Z=0. 

 


1)   Concentration of target nuclei were taken from various sources. Most informative are results of neutron activation analysis, though available only for a restricted number of materials. Other possible sources can be either real specifications of materials or industrial specifications like ASTM, and so on.

It is very often, that impurities at level of 1-100 ppm may produce major contribution to activation induced by thermal and moderated neutrons. For example, the most sensitive impurity in steel is cobalt. Its content ranges from 30 ppm to 150 ppm in carbon steel, and from 150 ppm to 2000 ppm in stainless steel. It is Co-60 (reaction Co-59(n,g)Co-60) that will determine radiation environment after few years of operation.

Concentration of elements in some materials used for the study are given in the Tab.1.

 

Table 1

Concentrations of elements in materials, ppm (mg/g)

Element

Stainless steel1

Polyethylene1

Tungsten1

Copper2

Aluminum alloy2

Na

<40

6.0(3)

<50

 

 

Mg

<2000

390(50)

<4E+3

13

<4.9E+4

Al

80(30)

<30

<200

420

 

S

<2000

<4E+3

<3E+4

 

 

Cl

<400

43(3)

<400

 

 

K

<3000

<7

<1E3

 

 

Ca

<500

<30

<500

18

 

Sc

<0.2

3(1)E-3

<0.02

 

 

Ti

<600

<50

<1E4

30

<1.5E+3

V

30(4)

<0.3

<8

 

 

Cr

15(1)E+4

5.7(3)

6(2)

100

<2.5E+3

Mn

250(20)

5.5(3)

<3

28

<1E+4

Fe

41(2)E+4

93(10)

120(40)

240

<4E+3

Co

0.17(2)E3

0.04

0.05(3)

104

1

Ni

32(5)E+4

<50

<5E+3

100

 

Cu

<150

<5

<500

99.2E+4

<1E+3

Zn

<70

3(1)

<10

<0.25

 

Ga

<150

<0.2

<100

 

 

As

80(40)

0.012(7)

<200

 

 

Se

<20

<0.06

<3

 

 

Br

<100

0.29(5)

<300

 

 

Rb

<70

<0.3

<3

 

 

Sr

<700

<5

<150

 

 

Zr

<800

<5

<50

70

 

Mo

<500

1.0(3)

<700

 

 

Ag

<7

<0.04

<0.7

 

 

Cd

<800

<0.1

<1E+3

 

 

In

<0.15

<2E-3

<0.5

 

 

Sn

<2000

<10

<2E+4

 

 

Sb

1,3(8)

<0.05

<0.15

200

 

I

<20

<0.08

<150

 

 

Cs

<3

<0.01

<0.1

 

 

Ba

<3

<1

<70

 

 

La

6(2)

0.09(1)

<1

 

 

Ce

<20

0.014(4)

<3

 

 

Sm

<4

0.037(3)

<5

 

 

Eu

<0.4

<0.004

<0.05

 

 

Dy

<1.5

0.011(6)

<8

 

 

Yb

<6

5(3)E-3

<1

 

 

Lu

<0.8

3(2)E-3

<0.15

 

 

Hf

<1.5

0.025(8)

<0.8

 

 

Ta

3(1)

<0.01

<0.1

 

 

W

110(10)

0.11(2)

98(3)E+4

 

 

Au

<1

12(6)E-4

<1

 

 

Hg

<7

<0.02

<0.7

 

 

Bi

 

 

 

70

 

Pb

 

 

 

24

 

1 Results of neutron activation analysis at MEPhI research reactor, not published.

2 Specifications of copper proposed for manufacturing of JT, E-mail from Werner Witzeling, December 1, 2000.

3 ASTM, specifications for aluminum based structural alloy 5083.

4 Conservative assumption.

 


3) Cross-section of nuclear reactions producing radioactive nuclei are usually available in form of data libraries.

Historically, neutron cross-sections, ranging from thermal energies up to 20 MeV, are studied rather well, because they are extensively used in fission reactor applications. There a number sources available, e.g ENDF, JANDL, IRDF, and others.

Calculated neutron cross-sections for threshold reactions are available up to energy 100 MeV (MENDL-2 data library for nuclear activation and transmutation).

Proton reaction data up to energy 10 GeV are available in form of experimental or calculation data compilations for a limited list of materials (Be, C, Al, Ti, Mn, Fe, Ni, Cu).

There were no pions reaction data found so far. For the purpose of this study, proton cross-sections are used for all hadrons. It is rather a coarse estimation, but it will allow to detect most important reactions and then to calculate necessary cross-sections using special codes, which implement nuclear interaction models.

 

4)  Operation scenario.

For the purpose of this study there is no need in detail specifying LHC operation history. It is assumed that LHC is operated at high luminosity during T and then is shut down. Set of used time parameters is presented in Tab.2.

Table 2

T

t

30 d

1 h, 3 h, 10 h, 1 d, 3 d, 10 d

200 d

1 h, 3 h, 10 h, 1 d, 3 d, 10 d, 30 d, 100 d

10 y

1 d, 3 d, 10 d, 30 d, 100 d, 1 y, 3 y

h-hour; d-day, y-year

 

For further study it is necessary to compose maintenance scenarios, including probable LHC operation history, access locations and time after shut down for dose calculation, sequence of dismantling operation, and so on.


Results

 

Activation of stainless steel and copper have been already studied.

1)   Specific Ke, kerma-equivalent, of steel and copper averaged over volume 0<R<100cm by 0<Z<100cm (Inner Detector) are given in the table 3. Kerma-equivalent is absorbed dose rate in standard layout – dose from a pointwise source at distance 1 m without shielding. So, if one need to estimate dose rate D, Gray per second, from an item of mass M, gram, at distance R, meter, he can use a simple formula D=M Ke/R2.

2)  Contributions of separate radionuclides induced by hadrons (20 MeV <E) to kerma-equivalent of steel are given in table 4.

3)  Contributions of separate radionuclides induced by neutrons (E<20 MeV) to kerma-equivalent of steel are given in table 4.

4)  2-d activity fields of are given in Annex (see the zip file). The fields outlines areas, where a steel item will be highly radioactive (above 100 mSy/h in terms of surface dose rate), radioactive (from 100 mSy/h to 10 mSy/h), and slightly radioactive (from 10 mSy/h to 0.1 mSy/h), as well as areas were low energy neutrons will make high contribution to total activation.

 

Table 3

Specific kerma-equivalent, Gy.m2/(s. g)

 

stainless steel

copper

t

neutrons

(E<20 MeV)

hadrons (20MeV<E)

neutrons

(E<20 MeV)

hadrons (20MeV<E)

 

T=30 day

1 hr

6.3.10-14

2.9.10-13

1.3.10-12

1.6.10-13

3 h

5.6.10-14

2.8.10-13

1.2.10-12

1.4.10-13

10 h

4.5.10-14

2.5.10-13

8.0.10-13

1.2.10-13

1 d

4.3.10-14

2.3.10-13

3.8.10-13

9.7.10-14

3 d

4.2.10-14

1.8.10-13

2.8.10-14

7.2.10-14

10 d

3.8.10-14

9.3.10-14

7.8.10-16

4.4.10-14

 

T=200 day

1 h

2.4.10-13

3.5.10-13

1.3.10-12

2.3.10-13

3 h

2.2.10-13

3.4.10-13

1.2.10-12

1.2.10-13

10 h

2.2.10-13

3.2.10-13

8.1.10-13

1.9.10-13

1 d

2.2.10-13

2.9.10-13

3.8.10-13

1.7.10-13

3 d

2.0.10-13

1.5.10-13

3.0.10-14

1.4.10-13

10 d

2.0.10-13

7.2.10-13

2.8.10-15

1.1.10-13

30 d

1.8.10-13

5.8.10-14

2.4.10-15

7.5.10-14

100 d

1.7.10-14

2.9.10-14

1.6.10-15

3.9.10-14

 

T=10 year

1 d

1.8.10-12

3.4.10-13

3.8.10-13

2.2.10-13

3 d

1.8.10-12

2.9.10-13

3.4.10-14

1.9.10-13

10 d

1.8.10-12

2.0.10-13

6.2.10-15

1.6.10-13

30 d

1.8.10-12

1.2.10-13

5.7.10-15

1.2.10-13

100 d

1.7.10-12

7.0.10-14

4.5.10-15

7.9.10-14

1 y

1.5.10-12

3.1.10-14

2.7.10-15

3.6.10-14

3 y

1.1.10-12

7.9.10-15

1.4.10-15

1.9.10-14

 

 


Table 4

Contribution of separate radionuclides to activity induced by hadrons (E<20 MeV) to kerma-equivalent of steel 

T=30 d

t

1 h

3 h

10 h

1 d

3 d

10 d

Na-24

3.99E+0

3.77E+0

2.98E+0

1.72E+0

 

 

Sc-44

2.60E+0

1.89E+0

 

 

 

 

Sc-44m + Sc-44

5.81E+0

5.92E+0

6.05E+0

5.65E+0

4.13E+0

 

Sc-46

1.21E+0

1.25E+0

1.36E+0

1.48E+0

1.88E+0

3.36E+0

V-48

1.35E+1

1.40E+1

1.51E+1

1.61E+1

1.90E+1

2.66E+1

Mn-52

5.93E+1

6.07E+1

6.40E+1

6.53E+1

6.56E+1

5.22E+1

Mn-54

1.36E+0

1.40E+0

1.53E+0

1.68E+0

2.15E+0

4.01E+0

Co-55

4.89E+0

4.68E+0

3.88E+0

2.44E+0

 

 

Co-56

4.61E+0

4.77E+0

5.20E+0

5.67E+0

7.18E+0

1.28E+1

 

T=200 d

t

1 h

3 h

10 h

1 d

3 d

10 d

30 d

100 d

Na-22

 

 

 

 

 

4.26E-1

7.98E-1

1.50E+0

Na-24

3.13E+0

2.95E+0

2.28E+0

1.28E+0

 

 

 

 

Sc-44

2.03E+0

1.48E+0

 

 

 

 

 

 

Sc-44m +Sc-44

4.55E+0

4.63E+0

4.62E+0

4.23E+0

2.92E+0

 

 

 

Sc-46

3.48E+0

3.59E+0

3.82E+0

4.09E+0

4.88E+0

7.19E+0

1.16E+1

1.29E+1

V-48

1.46E+1

1.50E+1

1.58E+1

1.65E+1

1.84E+1

2.12E+1

1.69E+1

1.61E+0

Mn-52

4.76E+1

4.87E+1

5.00E+1

5.01E+1

4.75E+1

3.11E+1

4.95E+0

 

Mn-54

5.91E+0

6.11E+0

6.51E+0

6.99E+0

8.45E+0

1.30E+1

2.36E+1

4.00E+1

Co-55

3.83E+0

3.66E+0

2.96E+0

1.83E+0

 

 

 

 

Co-56

1.28E+1

1.32E+1

1.40E+1

1.50E+1

1.79E+1

2.62E+1

4.16E+1

4.40E+1

 

T= 10 y

t

1 d

3 d

10 d

30 d

100 d

1 y  

3 y

 

Na-22

1.32E+0

1.55E+0

2.21E+0

3.47E+0

5.37E+0

1.10E+1

2.90E+1

 

Na-24

1.09E+0

 

 

 

 

 

 

 

Sc-44m

1.74E+0

1.16E+0

 

 

 

 

 

 

Sc-44

1.84E+0

1.23E+0

 

 

 

 

 

 

Sc-46

4.28E+0

4.96E+0

6.72E+0

9.06E+0

8.28E+0

2.31E+0

 

 

V-48

1.40E+1

1.51E+1

1.60E+1

1.07E+1

8.37E-1

 

 

 

Mn-52

4.24E+1

3.90E+1

2.35E+1

3.13E+0

 

 

 

 

Mn-54

1.65E+1

1.94E+1

2.73E+1

4.16E+1

5.81E+1

8.03E+1

7.10E+1

 

Co-55

1.55E+0

 

 

 

 

 

 

 

Co-56

1.52E+1

1.76E+1

2.38E+1

3.16E+1

2.75E+1

6.35E+0

 

 

 

 


Table 5

Contribution of separate radionuclides to activity induced by neutrons (E<20 MeV) to kerma-equivalent of steel

T=  30 d

 

1 h

3 h

10 h

1 d

3 d

10 d

Ni-64 (n,g) Ni-65

7.5E+00

4.9E+00

 

 

 

 

Ga-71 (n,g) Ga-72

2.7E+00

2.8E+00

2.4E+00

 

 

 

Cr-50 (n,g) Cr-51

7.0E+00

8.0E+00

9.6E+00

1.0E+01

1.0E+01

8.9E+00

Mn-55 (n,g) Mn-56

1.7E+01

1.2E+01

2.2E+00

 

 

 

Br-81 (n,g) Br-82

1.7E+00

1.8E+00

1.9E+00

 

 

 

Fe-58 (n,g) Fe-59

2.9E+00

3.4E+00

4.1E+00

4.3E+00

4.4E+00

4.1E+00

Co-59 (n,g) Co-60

4.0E+01

4.6E+01

5.5E+01

5.9E+01

6.2E+01

6.5E+01

Fe-56 (n,p) Mn-56

3.0E+00

2.0E+00

 

 

 

 

Ni-58 (n,p) Co-58

1.5E+01

1.7E+01

2.1E+01

2.2E+01

2.3E+01

2.2E+01

 

T=  200 d

 

1 h

3 h

10 h

1 d

3 d

10d

30 d

100 d

Cr-50 (n,g)  Cr-51

3.6E+00

3.8E+00

4.0E+00

3.9E+00

3.7E+00

3.2E+00

2.0E+00

 

Mn-55 (n,g)  Mn-56

4.8E+00

3.0E+00

 

 

 

 

 

 

Fe-58 (n,g)  Fe-59

2.1E+00

2.2E+00

2.3E+00

2.3E+00

2.2E+00

2.0E+00

1.6E+00

 

Co-59 (n,g)  Co-60

7.2E+01

7.5E+01

7.8E+01

7.8E+01

7.9E+01

8.0E+01

8.4E+01

9.3E+01

Ni-64 (n,g)  Ni-65

2.1E+00

1.2E+00

 

 

 

 

 

 

Ni-58 (n,p)  Co-58

1.4E+01

1.5E+01

1.6E+01

1.5E+01

1.5E+01

1.5E+01

1.3E+01

7.2E+00

 

T=  10 y

 

1 d

30 d

100 d

Co-59  (n,g)  Co-60

9.8E+01

9.8E+01

1.0E+02

Ni-58  (n,p)  Co-58

2.1E+00

1.6E+00